Content deleted Content added
→In the absence of excluded middle: Inline citation |
→Ordering of cardinals: Distinguish from relation as set |
||
Line 100:
==Consequences==
===Ordering of cardinals===
With equality defined as the existence of a bijection between their underlying sets, Cantor also defines
Assuming the [[law of excluded middle]], [[characteristic functions]] surject onto powersets, and then <math>|2^S|=|{\mathcal P}(S)|</math>. So the uncountable <math>2^{\mathbb N}</math> is also not enumerable and it can also be mapped onto <math>{\mathbb N}</math>. [[classical mathematics|Classically]], the [[Schröder–Bernstein theorem]] is valid and says that any two sets which are in the injective image of one another are in bijection as well. Here, every unbounded subset of <math>{\mathbb N}</math> is then in bijection with <math>{\mathbb N}</math> itself, and every [[subcountable]] set (a property in terms of surjections) is then already countable, i.e. in the surjective image of <math>{\mathbb N}</math>. In this context the possibilities are then exhausted, making "<math>\le</math>" a [[partial order|non-strict partial order]], or even a [[total order]] when assuming [[axiom of choice|choice]]. The diagonal argument thus establishes that, although both sets under consideration are infinite, there are actually ''more'' infinite sequences of ones and zeros than there are natural numbers.
|