Hyperparameter optimization: Difference between revisions

Content deleted Content added
Eigenvoid (talk | contribs)
Dab link
Line 143:
== Issues with hyperparameter optimization ==
 
When hyperparameter optimization is done, the set of hyperparameters are often fitted on a training set and selected based on the generalization performance, or score, of a validation set. However, this procedure is at risk of overfitting the hyperparameters to the validation set. Therefore, the generalization performance score of the validation set (which can be several sets in the case of a cross-validation procedure) cannot be used to simultanesouly estimate the generalization performance of the final model. In order to do so, the generalization performance has to be evaluated on a set independent (which has no intersection) of the set (or sets) used for the optimization of the hyperparameters, otherwise the performance might give a value which is too optimistic (too large). This can be done on a second test set, or through an outer [[Cross-validation (statistics)|cross-validation]] procedure called nested cross-validation, which allows an unbiased estimation of the generalization performance of the model, taking into account the bias due to the hyperparameter optimization.
 
== See also ==