Content deleted Content added
mNo edit summary |
|||
Line 2:
[[File:Different Views on RKHS.png|thumb|right|Figure illustrates related but varying approaches to viewing RKHS]]
In [[functional analysis]] (a branch of [[mathematics]]), a '''reproducing kernel Hilbert space''' ('''RKHS''') is a [[Hilbert space]] of functions in which point evaluation is a continuous linear [[Functional (mathematics)|functional]]. Roughly speaking, this means that if two functions <math>f</math> and <math>g</math> in the RKHS are close in norm, i.e., <math>\|f-g\|</math> is small, then <math>f</math> and <math>g</math> are also pointwise close, i.e., <math>|f(x)-g(x)|</math> is small for all <math>x</math>. The converse does not need to be true. Informally, this can be shown by looking at the [[Uniform norm|supremum norm]]: the sequence of functions <math>\sin^n (x)</math> converges pointwise, but
It is not entirely straightforward to construct a Hilbert space of functions which is not an RKHS.<ref>Alpay, D., and T. M. Mills. "A family of Hilbert spaces which are not reproducing kernel Hilbert spaces." J. Anal. Appl. 1.2 (2003): 107–111.</ref> Some examples, however, have been found.<ref> Z. Pasternak-Winiarski, "On weights which admit reproducing kernel of Bergman type", ''International Journal of Mathematics and Mathematical Sciences'', vol. 15, Issue 1, 1992. </ref><ref> T. Ł. Żynda, "On weights which admit reproducing kernel of Szeg¨o type", ''Journal of Contemporary Mathematical Analysis'' (Armenian Academy of Sciences), 55, 2020. </ref>
|