Cantor's first set theory article: Difference between revisions

Content deleted Content added
m convert special characters found by Wikipedia:Typo Team/moss (via WP:JWB)
Tag: Reverted
Line 350:
| style="padding-left: 1em; padding-right: 1em" |The denseness of sequence ''P'' is used to [[recursively define]] a nested sequence of intervals that excludes all of the numbers in ''P''. The [[base case (recursion)|base case]] starts with the interval (''a'',&nbsp;''b''). Since ''P'' is dense in [''a'',&nbsp;''b''], there are infinitely many numbers of ''P'' in (''a'',&nbsp;''b''). Let ''x''<sub>''k''<sub>1</sub></sub> be the number with the least index and ''x''<sub>''k''<sub>2</sub></sub> be the number with the next larger index, and let ''a''<sub>1</sub> be the smaller and ''b''<sub>1</sub> be the larger of these two numbers. Then, ''k''<sub>1</sub>&nbsp;<&nbsp;''k''<sub>2</sub>, {{nowrap|''a'' < ''a''<sub>1</sub> < ''b''<sub>1</sub> < ''b''}}, and (''a''<sub>1</sub>,&nbsp;''b''<sub>1</sub>) is a [[proper subinterval]] of (''a'',&nbsp;''b''). Also, {{nowrap|''x''<sub>''m''</sub> ∉ (''a''<sub>1</sub>,&nbsp;''b''<sub>1</sub>)}} for ''m''&nbsp;≤&nbsp;''k''<sub>2</sub> since these ''x''<sub>''m''</sub> are the endpoints of (''a''<sub>1</sub>,&nbsp;''b''<sub>1</sub>). Repeating the above proof with the interval (''a''<sub>1</sub>,&nbsp;''b''<sub>1</sub>) produces ''k''<sub>3</sub>, ''k''<sub>4</sub>, ''a''<sub>2</sub>, ''b''<sub>2</sub> such that {{nowrap|''k''<sub>1</sub> < ''k''<sub>2</sub> < ''k''<sub>3</sub> < ''k''<sub>4</sub>}} and {{nowrap|''a'' < ''a''<sub>1</sub> < ''a''<sub>2</sub> < ''b''<sub>2</sub> < ''b''<sub>1</sub> < ''b''}} and {{nowrap|''x''<sub>''m''</sub> ∉ (''a''<sub>2</sub>, ''b''<sub>2</sub>)}} for ''m''&nbsp;≤&nbsp;''k''<sub>4</sub>.<ref group=proof name=p/>
 
The [[recursive step]] starts with the interval {{nowrap|(''a''<sub>''n''–1</sub>, ''b''<sub>''n''–1</sub>)}}, the inequalities {{nowrap|''k''<sub>1</sub> < ''k''<sub>2</sub> < . . . < ''k''<sub>2''n''–2–3</sub> < ''k''<sub>2''n''–1–2</sub>}} and {{nowrap|''a'' < ''a''<sub>1</sub> < . . . < ''a''<sub>''n''–1</sub> < ''b''<sub>''n''–1</sub> . . . < ''b''<sub>1</sub> < ''b''}}, and the fact that the interval {{nowrap|(''a''<sub>''n''–1</sub>, ''b''<sub>''n''–1</sub>)}} excludes the first 2''n''{{space|hair|2}}–2 members of the sequence {{nowrap|''P''{{space|hair|2}}—{{space|hair|2}}that}} is, {{nowrap|''x''<sub>''m''</sub> ∉ (''a''<sub>''n''–1</sub>, ''b''<sub>''n''–1</sub>)}} for ''m''&nbsp;≤&nbsp;''k''<sub>2''n''–2</sub>. Since ''P'' is dense in [''a'',&nbsp;''b''], there are infinitely many numbers of ''P'' in {{nowrap|(''a''<sub>''n''–1</sub>, ''b''<sub>''n''–1</sub>)}}. Let ''x''<sub>''k''<sub>2''n''{{space|hair|2}}–1</sub></sub> be the number with the least index and ''x''<sub>''k''<sub>2''n''</sub></sub> be the number with the next larger index, and let ''a''<sub>''n''</sub> be the smaller and ''b''<sub>''n''</sub> be the larger of these two numbers. Then, ''k''<sub>2''n''{{space|hair|2}}–1</sub>&nbsp;<&nbsp;''k''<sub>2''n''</sub>, {{nowrap|''a''<sub>''n''–1</sub> < ''a''<sub>''n''</sub> < ''b''<sub>''n''</sub> < ''b''<sub>''n''–1</sub>}}, and (''a''<sub>''n''</sub>,&nbsp;''b''<sub>''n''</sub>) is a [[proper subinterval]] of {{nowrap|(''a''<sub>''n''–1</sub>, ''b''<sub>''n''–1</sub>)}}. Combining these inequalities with the ones for step ''n''{{space|hair|2}}–1 of the recursion produces {{nowrap|''k''<sub>1</sub> < ''k''<sub>2</sub> < . . . < ''k''<sub>2''n''–1</sub> < ''k''<sub>2''n''</sub>}} and {{nowrap|''a'' < ''a''<sub>1</sub> < . . . < ''a''<sub>''n''</sub> < ''b''<sub>''n''</sub> . . . < ''b''<sub>1</sub> < ''b''}}. Also, {{nowrap|''x''<sub>''m''</sub> ∉ (''a''<sub>''n''</sub>,&nbsp;''b''<sub>''n''</sub>)}} for ''m''&nbsp;=&nbsp;''k''<sub>2''n''–1</sub> and ''m''&nbsp;=&nbsp;''k''<sub>2''n''</sub> since these ''x''<sub>''m''</sub> are the endpoints of (''a''<sub>''n''</sub>,&nbsp;''b''<sub>''n''</sub>). This together with {{nowrap|(''a''<sub>''n''–1</sub>, ''b''<sub>''n''–1</sub>)}} excluding the first 2''n''{{space|hair|2}}–2 members of sequence ''P'' implies that the interval (''a''<sub>''n''</sub>,&nbsp;''b''<sub>''n''</sub>) excludes the first 2''n'' members of {{nowrap|''P''{{space|hair|2}}—{{space|hair|2}}that}} is, {{nowrap|''x''<sub>''m''</sub> ∉ (''a''<sub>''n''</sub>, ''b''<sub>''n''</sub>)}} for ''m''&nbsp;≤&nbsp;''k''<sub>2''n''</sub>. Therefore, for all ''n'', {{nowrap|''x''<sub>''n''</sub> ∉ (''a''<sub>''n''</sub>, ''b''<sub>''n''</sub>)}} since ''n''&nbsp;≤&nbsp;''k''<sub>2''n''</sub>.<ref group=proof name=p/>
 
The sequence ''a''<sub>''n''</sub> is increasing and [[Upper and lower bounds|bounded above]] by ''b'', so the limit ''A''&nbsp;=&nbsp;lim<sub>''n''&nbsp;→&nbsp;∞</sub>&nbsp;''a''<sub>''n''</sub> exists. Similarly, the limit ''B''&nbsp;=&nbsp;lim<sub>''n''&nbsp;→&nbsp;∞</sub>&nbsp;''b''<sub>''n''</sub> exists since the sequence ''b''<sub>''n''</sub> is decreasing and [[Upper and lower bounds|bounded below]] by ''a''. Also, ''a''<sub>''n''</sub>&nbsp;<&nbsp;''b''<sub>''n''</sub> implies ''A''&nbsp;≤&nbsp;''B''. If ''A''&nbsp;<&nbsp;''B'', then for every ''n'': ''x''<sub>''n''</sub>&nbsp;∉&nbsp;(''A'',&nbsp;''B'') because ''x''<sub>''n''</sub> is not in the larger interval (''a''<sub>''n''</sub>,&nbsp;''b''<sub>''n''</sub>). This contradicts ''P'' being dense in [''a'',&nbsp;''b'']. Hence, ''A''&nbsp;=&nbsp;''B''. For all ''n'', {{nowrap|''A'' ∈ (''a''<sub>''n''</sub>,&nbsp;''b''<sub>''n''</sub>)}} but {{nowrap|''x''<sub>''n''</sub> ∉ (''a''<sub>''n''</sub>,&nbsp;''b''<sub>''n''</sub>)}}. Therefore, ''A'' is a number in [''a'',&nbsp;''b''] that is not contained in ''P''.<ref group=proof name=p/>