Content deleted Content added
m v2.05b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation) |
m task, replaced: journal=NPJ → journal=npj (2) |
||
Line 15:
=== Quantum networks ===
At a larger scale, researchers have attempted to generalize neural networks to the quantum setting. One way of constructing a quantum neuron is to first generalise classical neurons and then generalising them further to make unitary gates. Interactions between neurons can be controlled quantumly, with [[unitary operator|unitary]] [[quantum logic gate|gates]], or classically, via [[measurement in quantum mechanics|measurement]] of the network states. This high-level theoretical technique can be applied broadly, by taking different types of networks and different implementations of quantum neurons, such as [[Integrated quantum photonics|photonically]] implemented neurons<ref name="WanDKGK16">{{cite journal|last1=Wan|first1=Kwok-Ho|last2=Dahlsten|first2=Oscar|last3=Kristjansson|first3=Hler|last4=Gardner|first4=Robert|last5=Kim|first5=Myungshik|year=2017|title=Quantum generalisation of feedforward neural networks|journal=
Quantum neural networks can be applied to algorithmic design: given [[qubits]] with tunable mutual interactions, one can attempt to learn interactions following the classical [[backpropagation]] rule from a [[training set]] of desired input-output relations, taken to be the desired output algorithm's behavior.<ref>{{cite journal |first1=J. |last1=Bang |display-authors=1 |first2=Junghee |last2=Ryu |first3=Seokwon |last3=Yoo |first4=Marcin |last4=Pawłowski |first5=Jinhyoung |last5=Lee |doi=10.1088/1367-2630/16/7/073017 |title=A strategy for quantum algorithm design assisted by machine learning |journal=New Journal of Physics |volume=16 |issue= 7|pages=073017 |year=2014 |arxiv=1301.1132 |bibcode=2014NJPh...16g3017B |s2cid=55377982 }}</ref><ref>{{cite journal |first1=E. C. |last1=Behrman |first2=J. E. |last2=Steck |first3=P. |last3=Kumar |first4=K. A. |last4=Walsh |arxiv=0808.1558 |title=Quantum Algorithm design using dynamic learning |journal=Quantum Information and Computation |volume=8 |issue=1–2 |pages=12–29 |year=2008 |doi=10.26421/QIC8.1-2-2 |s2cid=18587557 }}</ref> The quantum network thus ‘learns’ an algorithm.
Line 23:
The first quantum associative memory algorithm was introduced by Dan Ventura and Tony Martinez in 1999.<ref>{{cite journal |first1=D. |last1=Ventura |first2=T. |last2=Martinez |url=https://pdfs.semanticscholar.org/d46f/e04b57b75a7f9c57f25d03d1c56b480ab755.pdf |archive-url=https://web.archive.org/web/20170911115617/https://pdfs.semanticscholar.org/d46f/e04b57b75a7f9c57f25d03d1c56b480ab755.pdf |url-status=dead |archive-date=2017-09-11 |title=A quantum associative memory based on Grover's algorithm |journal=Proceedings of the International Conference on Artificial Neural Networks and Genetics Algorithms |pages=22–27 |year=1999 |doi=10.1007/978-3-7091-6384-9_5 |isbn=978-3-211-83364-3 |s2cid=3258510 }}</ref> The authors do not attempt to translate the structure of artificial neural network models into quantum theory, but propose an algorithm for a [[quantum circuit|circuit-based quantum computer]] that simulates [[associative memory (psychology)|associative memory]]. The memory states (in [[Hopfield neural network]]s saved in the weights of the neural connections) are written into a superposition, and a [[Grover search algorithm|Grover-like quantum search algorithm]] retrieves the memory state closest to a given input. As such, this is not a fully content-addressable memory, since only incomplete patterns can be retrieved.
The first truly content-addressable quantum memory, which can retrieve patterns also from corrupted inputs, was proposed by Carlo A. Trugenberger.<ref>{{Cite journal |last=Trugenberger |first=C. A. |date=2001-07-18 |title=Probabilistic Quantum Memories |url=http://dx.doi.org/10.1103/physrevlett.87.067901 |journal=Physical Review Letters |volume=87 |issue=6 |doi=10.1103/physrevlett.87.067901 |issn=0031-9007}}</ref><ref name=":2">{{Cite journal |last=Trugenberger |first=Carlo A. |date=2002 |title=Quantum Pattern Recognition |journal=Quantum Information Processing |volume=1 |issue=6 |pages=
Trugenberger,<ref name=":2" /> however, has shown that his proababilistic model of quantum associative memory can be efficiently implemented and re-used multiples times for any polynomial number of stored patterns, a large advantage with respect to classical associative memories.
=== Classical neural networks inspired by quantum theory ===
|