Continuous linear operator: Difference between revisions

Content deleted Content added
Also added an example demonstrating the statement.
Line 62:
 
The notion of "bounded set" for a topological vector space is that of being a [[Bounded set (topological vector space)|von Neumann bounded set]].
If the space happens to also be a [[normed space]] (or a [[seminormed space]]), such as the scalar field with the [[absolute value]] for instance, then a subset <math>S</math> is von Neumann bounded if and only if it is {{em|[[Norm (mathematics)|norm]] bounded; that is}}, ifmeaning and only ifthat <math>\sup_{s \in S} \|s\| < \infty.</math>
A subset of a normed (or seminormed) space is called {{em|bounded}} if it is norm-bounded (or equivalently, von Neumann bounded).
For example, the scalar field (<math>\Reals</math> or <math>\Complex</math>) with the [[absolute value]] <math>|\cdot|</math> is a normed space, so a subset <math>S</math> is bounded if and only if <math>\sup_{s \in S} |s|</math> is finite, which happens if and only if <math>S</math> is contained in some open (or closed) ball centered at the origin (zero).
 
If <math>S \subseteq X</math> is a set then <math>F : X \to Y</math> is said to be {{em|{{visible anchor|function bounded on a set|bounded on a set|text=bounded on <math>S</math>}}}} if <math>F(S)</math> is a [[Bounded set (topological vector space)|bounded subset]] of <math>Y,</math> which if <math>(Y, \|\cdot\|)</math> is a normed (or seminormed) space happens if and only if <math>\sup_{s \in S} \|F(s)\| < \infty.</math>
A linear map <math>F</math> is bounded on a set <math>S</math> if and only if it is bounded on <math>x + S</math> for every <math>x \in X</math> (because <math>F(x + S) = F(x) + F(S)</math> and any translation of a bounded set is again bounded).