Content deleted Content added
Also added an example demonstrating the statement. |
Rearranged |
||
Line 57:
Throughout, <math>F : X \to Y</math> is a [[linear map]] between [[topological vector space]]s (TVSs).
'''Bounded
{{See also|Bounded set (topological vector space)}}
The notion of a "bounded set" for a topological vector space is that of being a [[Bounded set (topological vector space)|von Neumann bounded set]].
If the space happens to also be a [[normed space]] (or a [[seminormed space]]) then a subset <math>S</math> is von Neumann bounded if and only if it is {{em|[[Norm (mathematics)|norm]] bounded}}, meaning that <math>\sup_{s \in S} \|s\| < \infty.</math>
A subset of a normed (or seminormed) space is called {{em|bounded}} if it is norm-bounded (or equivalently, von Neumann bounded).
For example, the scalar field (<math>\Reals</math> or <math>\Complex</math>) with the [[absolute value]] <math>|\cdot|</math> is a normed space, so a subset <math>S</math> is bounded if and only if <math>\sup_{s \in S} |s|</math> is finite, which happens if and only if <math>S</math> is contained in some open (or closed) ball centered at the origin (zero).
'''Function bounded on a set'''
If <math>S \subseteq X</math> is a set then <math>F : X \to Y</math> is said to be {{em|{{visible anchor|function bounded on a set|bounded on a set|text=bounded on <math>S</math>}}}} if <math>F(S)</math> is a [[Bounded set (topological vector space)|bounded subset]] of <math>Y,</math> which if <math>(Y, \|\cdot\|)</math> is a normed (or seminormed) space happens if and only if <math>\sup_{s \in S} \|F(s)\| < \infty.</math>
Line 75 ⟶ 77:
By definition, a linear map <math>F : X \to Y</math> between [[Topological vector space|TVS]]s is said to be {{em|[[Bounded linear operator|bounded]]}} and is called a {{em|{{visible anchor|bounded linear operator|text=[[bounded linear operator]]}}}} if for every [[Bounded set (topological vector space)|(von Neumann) bounded subset]] <math>B \subseteq X</math> of its ___domain, <math>F(B)</math> is a bounded subset of it codomain; or said more briefly, if it is bounded on every bounded subset of its ___domain. When the ___domain <math>X</math> is a normed (or seminormed) space then it suffices to check this condition for the open or closed unit ball centered at the origin. Explicitly, if <math>B_1</math> denotes this ball then <math>F : X \to Y</math> is a bounded linear operator if and only if <math>F\left(B_1\right)</math> is a bounded subset of <math>Y;</math> if <math>Y</math> is also a (semi)normed space then this happens if and only if the [[operator norm]] <math>\|F\| := \sup_{\|x\| \leq 1} \|F(x)\| < \infty</math> is finite. Every [[sequentially continuous]] linear operator is bounded.{{sfn|Wilansky|2013|pp=47-50}}
'''
{{See also|Local boundedness}}
|