Content deleted Content added
Added observation |
|||
Line 72:
If <math>S \subseteq X</math> is a set then <math>F : X \to Y</math> is said to be {{em|{{visible anchor|function bounded on a set|bounded on a set|text=bounded on <math>S</math>}}}} if <math>F(S)</math> is a [[Bounded set (topological vector space)|bounded subset]] of <math>Y,</math> which if <math>(Y, \|\cdot\|)</math> is a normed (or seminormed) space happens if and only if <math>\sup_{s \in S} \|F(s)\| < \infty.</math>
A linear map <math>F</math> is bounded on a set <math>S</math> if and only if it is bounded on <math>x + S := \{x + s : s \in S\}</math> for every <math>x \in X</math> (because <math>F(x + S) = F(x) + F(S)</math> and any translation of a bounded set is again bounded) if and only if it is bounded on <math>c S := \{c s : s \in S\}</math> for every non-zero scalar <math>c \neq 0</math> (because <math>F(c S) = c F(S)</math> and any scalar multiple of a bounded set is again bounded).
Consequently, if <math>(X, \|\cdot\|)</math> is a normed or seminormed space, then a linear map <math>F : X \to Y</math> is bounded on some (equivalently, on every) non-degenerate open or closed ball (not necessarily centered at the origin, and of any radius) if and only if it is bounded on the closed unit ball centered at the origin <math>\{x \in X : \|x\| \leq 1\}.</math>
'''Bounded linear maps'''
|