Content deleted Content added
I delete the paragraph which is false. For example, 1/x diverges as x -> 0, and is of the indeterminate form 1/0, but neither diverges to infinity nor negative infinity. In such situations, extra information such at 1/0^+ = \infty are required. |
Rescuing orphaned refs (":3" from rev 1166543108) |
||
Line 68:
# The limit fails to exist.
In each case the absolute value <math>|f/g|</math> approaches <math>+\infty</math>, and so the quotient <math>f/g</math> must diverge, in the sense of the [[extended real number]]s (in the framework of the [[projectively extended real line]], the limit is the [[Point at infinity|unsigned infinity]] <math>\infty</math> in all three cases<ref name=":3">{{Cite web|url=https://www.cut-the-knot.org/blue/GhostCity.shtml|title=Undefined vs Indeterminate in Mathematics|website=www.cut-the-knot.org|access-date=2019-12-02}}</ref>). Similarly, any expression of the form <math>a/0</math> with <math>a\ne0</math> (including <math>a=+\infty</math> and <math>a=-\infty</math>) is not an indeterminate form, since a quotient giving rise to such an expression will always diverge.
The expression <math>0^\infty</math> is not an indeterminate form. The expression <math>0^{+\infty}</math> obtained from considering <math>\lim_{x \to c} f(x)^{g(x)}</math> gives the limit <math>0~</math>, provided that <math>f(x)</math> remains nonnegative as <math>x</math> approaches <math>c</math>. The expression <math>0^{-\infty}</math> is similarly equivalent to <math>1/0</math>; if <math>f(x) > 0</math> as <math>x</math> approaches <math>c</math>, the limit comes out as <math>+\infty</math>.
|