Content deleted Content added
Citation bot (talk | contribs) Add: bibcode. Removed parameters. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox2 | #UCB_webform_linked 734/3179 |
|||
Line 81:
* [[C4.5 algorithm|C4.5]] (successor of ID3)
* [[Predictive analytics#Classification and regression trees (CART)|CART]] (Classification And Regression Tree)<ref name="bfos" />
* [[Chi-square automatic interaction detection]] (CHAID). Performs multi-level splits when computing classification trees.<ref>{{Cite journal | doi = 10.2307/2986296 | last1 = Kass | first1 = G. V. | year = 1980 | title = An exploratory technique for investigating large quantities of categorical data | jstor = 2986296| journal = Applied Statistics | volume = 29 | issue = 2| pages = 119–127 }}</ref><ref>{{Cite journal|last1=Biggs|first1=David|last2=De Ville|first2=Barry|last3=Suen|first3=Ed|date=1991|title=A method of choosing multiway partitions for classification and decision trees|url=https://doi.org/10.1080/02664769100000005|journal=Journal of Applied Statistics|volume=18|issue=1|pages=49–62|doi=10.1080/02664769100000005|bibcode=1991JApSt..18...49B |issn=0266-4763}}</ref><ref>Ritschard, G. (2013), '''"'''CHAID and Earlier Supervised Tree Methods", in J.J. McArdle and G. Ritschard (eds), ''Contemporary Issues in Exploratory Data Mining in the Behavioral Sciences'', Quantitative Methodology Series, New York: Routledge, pages 48-74. [https://www.researchgate.net/publication/315476407_CHAID_and_Earlier_Supervised_Tree_Methods Preprint]</ref>
* [[Multivariate adaptive regression splines|MARS]]: extends decision trees to handle numerical data better.
* Conditional Inference Trees. Statistics-based approach that uses non-parametric tests as splitting criteria, corrected for multiple testing to avoid overfitting. This approach results in unbiased predictor selection and does not require pruning.<ref name="Hothorn2006">{{Cite journal | doi = 10.1198/106186006X133933 | last1 = Hothorn | first1 = T.| last2 = Hornik | first2 = K.| last3 = Zeileis | first3 = A.| year = 2006 | title = Unbiased Recursive Partitioning: A Conditional Inference Framework | jstor = 27594202| journal = Journal of Computational and Graphical Statistics | volume = 15 | issue = 3| pages = 651–674 | citeseerx = 10.1.1.527.2935 | s2cid = 6074128 }}</ref><ref name="Strobl2009">{{Cite journal | doi = 10.1037/a0016973 | pmid = 19968396 | pmc = 2927982 | last1 = Strobl | first1 = C.| last2 = Malley | first2 = J.| last3 = Tutz | first3 = G.| year = 2009 | title = An Introduction to Recursive Partitioning: Rationale, Application and Characteristics of Classification and Regression Trees, Bagging and Random Forests | journal = Psychological Methods | volume = 14 | issue = 4| pages = 323–348 }}</ref>
Line 166:
===Gini impurity===
'''Gini impurity''', '''Gini's diversity index''',<ref>{{cite web |title=Growing Decision Trees |url=https://www.mathworks.com/help/stats/growing-decision-trees.html |website=MathWorks
For a set of items with <math>J</math> classes and relative frequencies <math>p_i</math>, <math>i \in \{1, 2, ...,J\}</math>, the probability of choosing an item with label <math>i</math> is <math>p_i</math>, and the probability of miscategorizing that item is <math>\sum_{k \ne i} p_k = 1-p_i</math>. The Gini impurity is computed by summing pairwise products of these probabilities for each class label:
|