Conjugate gradient squared method: Difference between revisions

Content deleted Content added
The Algorithm: Added a step
m ce in lead section
Line 1:
{{AfC submission|t||ts=20230126112013|u=MtPenguinMonster|ns=118|demo=}}<!-- Important, do not remove this line before article has been created. -->
 
In [[numerical linear algebra]], the '''conjugate gradient squared method (CGS)''' is an [[iterative method|iterative]] algorithm for solving systems of linear equations of the form <math>Ax = b</math>, particularly in cases where calculatingcomputing <math>A^T</math> is impractical.<ref>{{cite web|title=Conjugate Gradient Squared Method|author=Wolfram Mathworld|url=https://mathworld.wolfram.com/ConjugateGradientSquaredMethod.html}}</ref> The CGS method was developed as an improvement to the [[Biconjugate gradient method]].<ref>{{cite web|title=cgs|author=Mathworks|url=https://au.mathworks.com/help/matlab/ref/cgs.html}}</ref><ref>{{cite book|author=[[Henk van der Vorst]]|title=Iterative Krylov Methods for Large Linear Systems|chapter=Bi-Conjugate Gradients|year=2003|isbn=0-521-81828-1}}</ref>
 
== The Algorithm ==