Content deleted Content added
fix t itle |
Citation bot (talk | contribs) Alter: title, template type. Add: chapter-url, chapter. Removed or converted URL. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox2 | #UCB_webform_linked 1345/2384 |
||
Line 25:
=== Transformers ===
With the introduction of [[Transformer (machine learning model)|Transformer models]], paraphrase generation approaches improved their ability to generate text by scaling [[neural network]] parameters and heavily parallelizing training through [[Feedforward neural network|feed-forward layers]].<ref>{{Cite journal |last1=Zhou |first1=Jianing |last2=Bhat |first2=Suma |date=2021 |title=Paraphrase Generation: A Survey of the State of the Art |url=https://aclanthology.org/2021.emnlp-main.414 |journal=Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing |language=en |___location=Online and Punta Cana, Dominican Republic |publisher=Association for Computational Linguistics |pages=5075–5086 |doi=10.18653/v1/2021.emnlp-main.414|s2cid=243865349 |doi-access=free }}</ref> These models are so fluent in generating text that human experts cannot identify if an example was human-authored or machine-generated.<ref>{{Cite journal |last1=Dou |first1=Yao |last2=Forbes |first2=Maxwell |last3=Koncel-Kedziorski |first3=Rik |last4=Smith |first4=Noah |last5=Choi |first5=Yejin |date=2022 |title=Is GPT-3 Text Indistinguishable from Human Text? Scarecrow: A Framework for Scrutinizing Machine Text |url=https://aclanthology.org/2022.acl-long.501 |journal=Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) |language=en |___location=Dublin, Ireland |publisher=Association for Computational Linguistics |pages=7250–7274 |doi=10.18653/v1/2022.acl-long.501|s2cid=247315430 |doi-access=free }}</ref> Transformer-based paraphrase generation relies on [[Autoencoder|autoencoding]], [[Autoregressive model|autoregressive]], or [[Seq2seq|sequence-to-sequence]] methods. Autoencoder models predict word replacement candidates with a one-hot distribution over the vocabulary, while autoregressive and seq2seq models generate new text based on the source predicting one word at a time.<ref>{{Cite journal |last1=Liu |first1=Xianggen |last2=Mou |first2=Lili |last3=Meng |first3=Fandong |last4=Zhou |first4=Hao |last5=Zhou |first5=Jie |last6=Song |first6=Sen |date=2020 |title=Unsupervised Paraphrasing by Simulated Annealing |url=https://www.aclweb.org/anthology/2020.acl-main.28 |journal=Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics |language=en |___location=Online |publisher=Association for Computational Linguistics |pages=302–312 |doi=10.18653/v1/2020.acl-main.28|s2cid=202537332 |doi-access=free }}</ref><ref>{{Cite
== Paraphrase recognition ==
|