Control theory: Difference between revisions

Content deleted Content added
Tag: Reverted
Tag: Reverted
Line 119:
[[Controllability]] and [[observability]] are main issues in the analysis of a system before deciding the best control strategy to be applied, or whether it is even possible to control or stabilize the system. Controllability is related to the possibility of forcing the system into a particular state by using an appropriate control signal. If a state is not controllable, then no signal will ever be able to control the state. If a state is not controllable, but its dynamics are stable, then the state is termed ''stabilizable''. Observability instead is related to the possibility of ''observing'', through output measurements, the state of a system. If a state is not observable, the controller will never be able to determine the behavior of an unobservable state and hence cannot use it to stabilize the system. However, similar to the stabilizability condition above, if a state cannot be observed it might still be detectable.
 
From a geometrical point of view, looking at the states of each vario be controlled, every "bad" state of these variables must be controllable and observable to ensure a good behavior in the closed-loop system. That is, if one of the [[eigenvalues]] of the system is not both controllable and observable, this part of the dynamics will remain untouched in the closed-loop system. If such an eigenvalue is not stable, the dynamics of this eigenvalue will be present in the closed-loop system which therefore will be unstable. Unobservable poles are not present in the transfer function realization of a state-space representation, which is why sometimes the latter is preferred in dynamical systems analysis.s
Solutions to problems of an u
 
Solutions to problems of an uncontrollable or unobservable system include adding actuators and sensors.
 
===Control specification===