Weakly interacting massive particle: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Alter: date, template type, first9, first10, first14, first3, first4, first5, first8, first11, first13. Add: s2cid, arxiv, pmc, pmid, doi, page, issue, volume, journal, bibcode, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by BorgQueen | Category:Physics beyond the Standard Model | #UCB_Category 45/86
Line 3:
'''Weakly interacting massive particles''' ('''WIMPs''') are hypothetical particles that are one of the proposed candidates for [[dark matter]].
 
There exists no formal definition of a WIMP, but broadly, it is a new [[elementary particle]] which interacts via [[gravity]] and any other force (or forces), potentially not part of the [[Standard Model]] itself, which is as weak as or weaker than the [[weak nuclear force]], but also non-vanishing in its strength. Many WIMP candidates are expected to have been produced thermally in the early Universe, similarly to the particles of the [[Standard Model]]<ref>{{cite journal | last = Garrett | first = Katherine | title = Dark matter: A primer | year = 2010 | journal = Advances in Astronomy | volume = 2011 | issue = 968283 | pages = 1–22 | doi = 10.1155/2011/968283| bibcode = 2011AdAst2011E...8G | doi-access = free }}</ref> according to [[Big Bang]] cosmology, and usually will constitute [[cold dark matter]].
Obtaining the correct abundance of dark matter today via [[thermal production]] requires a self-[[annihilation]] [[Cross section (physics)|cross section]] of <math>\langle \sigma v \rangle \simeq 3 \times 10^{-26} \mathrm{cm}^{3} \;\mathrm{s}^{-1}</math>, which is roughly what is expected for a new particle in the 100&nbsp;[[GeV]] mass range that interacts via the [[electroweak force]].
 
Line 111:
Annual modulation is one of the predicted signatures of a WIMP signal,<ref>{{cite journal|last1=Drukier|first1=Andrzej K.|last2=Freese|first2=Katherine|last3=Spergel|first3=David N.|title=Detecting cold dark-matter candidates|journal=Physical Review D|date=15 June 1986|volume=33|issue=12|pages=3495–3508|doi=10.1103/PhysRevD.33.3495|pmid=9956575|bibcode=1986PhRvD..33.3495D}}</ref><ref name=Freese1988>{{cite journal |author=K. Freese |author2=J. Frieman |author3=A. Gould |title=Signal Modulation in Cold Dark Matter Detection |journal=Physical Review D |year=1988 |doi=10.1103/PhysRevD.37.3388 |pmid=9958634 |volume=37 |issue=12 |pages=3388–3405|bibcode = 1988PhRvD..37.3388F |osti=1448427 |s2cid=2610174 |url=https://semanticscholar.org/paper/d64afd44280f95754824a7696847428a38f657cd }}</ref> and on this basis the DAMA collaboration has claimed a positive detection. Other groups, however, have not confirmed this result. The CDMS data made public in May 2004 exclude the entire DAMA signal region given certain standard assumptions about the properties of the WIMPs and the dark matter halo, and this has been followed by many other experiments (see Fig 2, right).
 
The [[Korea Invisible Mass Search#COSINE|COSINE-100]] collaboration (a merging of KIMS and DM-Ice groups) published their results on replicating the DAMA/LIBRA signal in December 2018 in journal Nature; their conclusion was that "this result rules out WIMP–nucleon interactions as the cause of the annual modulation observed by the DAMA collaboration".<ref>{{Cite journal | doi=10.1038/s41586-018-0739-1|pmid = 30518890| title=An experiment to search for dark-matter interactions using sodium iodide detectors| journal=Nature| volume=564| issue=7734| pages=83–86| year=2018| author1=COSINE-100 Collaboration| bibcode=2018Natur.564...83C|arxiv = 1906.01791|s2cid = 54459495}}</ref> In 2021 new results from COSINE-100 and [[ANAIS-112]] both failed to replicate the DAMA/LIBRA signal<ref>{{Cite journal |last1=Amaré |first1=J. |last2=Cebrián |first2=S. |last3=Cintas |first3=D. |last4=Coarasa |first4=I. |last5=García |first5=E. |last6=Martínez |first6=M. |last7=Oliván |first7=M. A. |last8=Ortigoza |first8=Y. |last9=de Solórzano |first9=A. Ortiz |last10=Puimedón |first10=J. |last11=Salinas |first11=A. |date=2021-05-27 |title=Annual modulation results from three-year exposure of ANAIS-112 |url=https://link.aps.org/doi/10.1103/PhysRevD.103.102005 |journal=Physical Review D |language=en |volume=103 |issue=10 |pages=102005 |arxiv=2103.01175 |bibcode=2021PhRvD.103j2005A |doi=10.1103/PhysRevD.103.102005 |issn=2470-0010 |s2cid=232092298}}</ref><ref>{{Cite journal |last1=Adhikari |first1=Govinda |last2=de Souza |first2=Estella B. |last3=Carlin |first3=Nelson |last4=Choi |first4=Jae Jin |last5=Choi |first5=Seonho |last6=Djamal |first6=Mitra |last7=Ezeribe |first7=Anthony C. |last8=França |first8=Luis E. |last9=Ha |first9=Chang Hyon |last10=Hahn |first10=In Sik |last11=Jeon |first11=Eunju |date=2021-11-12 |title=Strong constraints from COSINE-100 on the DAMA dark matter results using the same sodium iodide target |journal=Science Advances |language=en |volume=7 |issue=46 |pages=eabk2699 |bibcode=2021SciA....7.2699A |doi=10.1126/sciadv.abk2699 |issn=2375-2548 |pmc=8580298 |pmid=34757778|arxiv=2104.03537 }}</ref><ref>{{Cite web |title=Is the end in sight for famous dark matter claim? |url=https://www.science.org/content/article/end-sight-famous-dark-matter-claim |access-date=2021-12-29 |website=www.science.org |language=en}}</ref> and in August 2022 COSINE-100 applied an analysis method similar to one used by DAMA/LIBRA and found a similar annual modulation suggesting the signal could be just a statistical artifact<ref>{{cite arXivjournal |last1=Adhikari |first1=G. |last2=Carlin |first2=N. |last3=Choi |first3=J. J. |last4=Choi |first4=S. |last5=Ezeribe |first5=A. C. |last6=Franca |first6=L. E. |last7=Ha |first7=C. |last8=Hahn |first8=I. S. |last9=Hollick |first9=S. J. |last10=Jeon |first10=E. J. |last11=Jo |first11=J. H. |last12=Joo |first12=H. W. |last13=Kang |first13=W. G. |last14=Kauer |first14=M. |last15=Kim |first15=B. H. |date=2022-08-102023 |title=An induced annual modulation signature in COSINE-100 data by DAMA/LIBRA's analysis method |classjournal=hepScientific Reports |volume=13 |issue=1 |page=4676 |doi=10.1038/s41598-023-31688-ex4 |eprintpmid=36949218 |pmc=10033922 |arxiv=2208.05158 |bibcode=2023NatSR..13.4676A }}</ref><ref>{{Cite journal |last=Castelvecchi |first=Davide |date=2022-08-16 |title=Notorious dark-matter signal could be due to analysis error |url=https://www.nature.com/articles/d41586-022-02222-9 |journal=Nature |language=en |doi=10.1038/d41586-022-02222-9|pmid=35974221 |s2cid=251624302 }}</ref> supporting a hypothesis first put forward on 2020.<ref>{{cite journal |author=D. Buttazzo |display-authors=etal |year=2020 |title=Annual modulations from secular variations: relaxing DAMA? |journal=Journal of High Energy Physics |volume=2020 |issue=4 |page=137 |arxiv=2002.00459 |bibcode=2020JHEP...04..137B |doi=10.1007/JHEP04(2020)137 |s2cid=211010848}}</ref>
 
===The future of direct detection===
Line 122:
In December 2021, results from [[PandaX]] have found no signal in their data, with a lowest excluded cross section of <math>3.8\times10^{-47} cm^2</math> at 40 GeV with 90% confidence level.<ref name="Meng et al-2021">{{Cite journal|last1=Meng|first1=Yue|last2=Wang|first2=Zhou|last3=Tao|first3=Yi|last4=Abdukerim|first4=Abdusalam|last5=Bo|first5=Zihao|last6=Chen|first6=Wei|last7=Chen|first7=Xun|last8=Chen|first8=Yunhua|last9=Cheng|first9=Chen|last10=Cheng|first10=Yunshan|last11=Cui|first11=Xiangyi|date=2021-12-23|title=Dark Matter Search Results from the PandaX-4T Commissioning Run|url=https://link.aps.org/doi/10.1103/PhysRevLett.127.261802|journal=Physical Review Letters|language=en|volume=127|issue=26|pages=261802|doi=10.1103/PhysRevLett.127.261802|pmid=35029500| arxiv=2107.13438 | bibcode=2021PhRvL.127z1802M |s2cid=236469421|issn=0031-9007}}</ref><ref name="Stephens-2021">{{Cite journal|last=Stephens|first=Marric|date=2021-12-23|title=Tightening the Net on Two Kinds of Dark Matter|url=https://physics.aps.org/articles/v14/s164|journal=Physics|language=en|volume=14| doi=10.1103/Physics.14.s164 | bibcode=2021PhyOJ..14.s164S | s2cid=247277808 |doi-access=free}}</ref>
 
In July 2023 the [[XENON#XENONnT|XENONnT]] and [[LZ experiment]] published the first results of their searches for WIMPs<ref>{{Cite journal |last=Day |first=Charles |date=2023-07-28 |title=The Search for WIMPs Continues |url=https://physics.aps.org/articles/v16/s106 |journal=Physics |language=en |volume=16 |pages=s106 |doi=10.1103/PhysRevLett.131.041002|s2cid=250343331 }}</ref>, the first excluding cross sections above <math>2.58\times10^{-47} cm^2</math> at 28 GeV with 90% confidence level<ref>{{Cite journal |lastlast1=XENON Collaboration |last2=Aprile |first2=E. |last3=Abe |first3=K. |last4=Agostini |first4=F. |last5=Ahmed Maouloud |first5=S. |last6=Althueser |first6=L. |last7=Andrieu |first7=B. |last8=Angelino |first8=E. |last9=Angevaare |first9=J. R R. |last10=Antochi |first10=V. C C. |last11=Antón Martin |first11=D. |last12=Arneodo |first12=F. |last13=Baudis |first13=L. |last14=Baxter |first14=A. L L. |last15=Bazyk |first15=M. |date=2023-07-28 |title=First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment |url=https://link.aps.org/doi/10.1103/PhysRevLett.131.041003 |journal=Physical Review Letters |volume=131 |issue=4 |pages=041003 |doi=10.1103/PhysRevLett.131.041003|arxiv=2303.14729 |bibcode=2023PhRvL.131d1003A |s2cid=257767449 }}</ref> and the second excluding cross sections above <math>9.2\times10^{-48} cm^2</math> at 36 GeV with 90% confidence level.<ref>{{Cite journal |lastlast1=LUX-ZEPLIN Collaboration |last2=Aalbers |first2=J. |last3=Akerib |first3=D. S S. |last4=Akerlof |first4=C. W W. |last5=Al Musalhi |first5=A. K K. |last6=Alder |first6=F. |last7=Alqahtani |first7=A. |last8=Alsum |first8=S. K K. |last9=Amarasinghe |first9=C. S S. |last10=Ames |first10=A. |last11=Anderson |first11=T. J J. |last12=Angelides |first12=N. |last13=Araújo |first13=H. M M. |last14=Armstrong |first14=J. E E. |last15=Arthurs |first15=M. |date=2023-07-28 |title=First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment |url=https://link.aps.org/doi/10.1103/PhysRevLett.131.041002 |journal=Physical Review Letters |volume=131 |issue=4 |pages=041002 |doi=10.1103/PhysRevLett.131.041002|arxiv=2207.03764 |bibcode=2023PhRvL.131d1002A |s2cid=250343331 }}</ref>
==See also==
<!-- Please keep entries in alphabetical order & add a short description [[WP:SEEALSO]] -->