Inverse gamma function: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Add: s2cid, doi, pages, issue, volume. | Use this bot. Report bugs. | Suggested by Headbomb | #UCB_toolbar
WikiCleanerBot (talk | contribs)
m v2.05b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation - Heading start with three "=" and later with level two)
Line 2:
{{Distinguish|Inverse-gamma distribution|Reciprocal gamma function}}
{{Orphan|date=July 2023}}
In [[mathematics]], the '''inverse gamma function''' <math>\Gamma^{-1}(x)</math> is the [[inverse function]] of the [[gamma function]]. In other words, it is the function satisfying <math display="inline">\Gamma(y)=x</math>. For example, <math>\Gamma^{-1}(24)=5</math> .<ref>{{Cite journal |last1=Borwein |first1= Jonathan M. |last2=Corless |first2= Robert M.|title=Gamma and Factorial in the Monthly |journal=The American Mathematical Monthly |year=2017 |volume= 125 |issue= 5 |pages= 400–424 |doi= 10.1080/00029890.2018.1420983 |arxiv=1703.05349 |jstor=48663320|s2cid= 119324101 }}</ref>. Usually, the inverse gamma function refers to the principal branch on the interval <math>\left(\Gamma(\alpha)= 0.8856031..., \infty\right)</math> where <math>\alpha=1.4616321...</math> is the unique positive number such that <math>\psi(\alpha)=0</math> <ref>{{cite journal |last1=Uchiyama |first1=Mitsuru |title=The principal inverse of the gamma function |date=April 2012 |url= https://www.jstor.org/stable/41505586 |journal=Proceedings of the American Mathematical Society|volume=140 |issue=4 |pages=1347 |doi= 10.1090/S0002-9939-2011-11023-2
|jstor=41505586 |s2cid=85549521 |access-date=20 March 2023}}</ref> (where <math>\psi(x)</math> is the [[digamma function]]).
 
[[File:Inverse Gamma Function.png|thumb]]
 
==== Definition ====
The inverse gamma function may be defined by the following integral representation<ref>{{cite journal |last1=Pedersen |first1=Henrik |title="Inverses of gamma functions" |journal=Constructive Approximation |date=9 September 2013 |volume=7 |issue=2 |pages=251–267 |doi=10.1007/s00365-014-9239-1 |arxiv=1309.2167 |s2cid=253898042 |url=https://link.springer.com/article/10.1007/s00365-014-9239-1}}</ref>
<math>\Gamma^{-1}(x)=a+bx+\int_{-\infty}^{\Gamma(\alpha)}\left(\frac{1}{x-t}-\frac{t}{t^{2}-1}\right)d\mu(t) </math>
Line 13:
Where <math>\int_{-\infty}^{\Gamma\left(\alpha\right)}\left(\frac{1}{t^{2}+1}\right)d\mu(t)<\infty</math>, and a and b are real numbers with <math>b\geqq0</math>, and <math>\mu (t)</math> is the [[Borel measure|Borel Meausure]].
 
==== Approximation ====
To compute the branches of the inverse gamma function one can first compute the Taylor series of <math>\Gamma(x)</math> near <math>\alpha</math>. The series can then be truncated and inverted, which yields successively better approximations to <math>\Gamma^{-1}(x)</math>. For instance, we have the quadratic approximation:<ref>{{cite book |first1=Robert M.|last1=Corless |first2=Folitse Komla|last2=Amenyou |last3=Jeffrey |first3=David |title=2017 19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) |chapter=Properties and Computation of the Functional Inverse of Gamma |journal=SYNASC |date=2017 |pages=65 |doi=10.1109/SYNASC.2017.00020|isbn=978-1-5386-2626-9 |s2cid=53287687 }}</ref>