Strongly regular graph: Difference between revisions

Content deleted Content added
Tags: Mobile edit Mobile web edit Advanced mobile edit
Tags: Mobile edit Mobile web edit Advanced mobile edit
Line 28:
* The [[line graph]] of a complete graph ''K<sub>n</sub>'' is an <math display="inline">\operatorname{srg}\left(\binom{n}{2}, 2(n - 2), n - 2, 4\right)</math>.
* The [[Chang graphs]] are srg(28, 12, 6, 4), the same as the line graph of ''K''<sub>8</sub>, but these four graphs are not isomorphic.
* The [[line graph]] of aEvery [[generalized quadrangle]] GQ(2, 4) is an srg(27, 10, 1, 5). In fact every generalized quadrangle of order (s, t) gives a strongly regular graph in this way: to wit, an srg((s + 1)(st + 1), s(t + 1), s − 1, t + 1) as its [[line graph]]. For example, GQ(2, 4) gives srg(27, 10, 1, 5) as its line graph.
* The [[Schläfli graph]] is an srg(27, 16, 10, 8).<ref>{{MathWorld | urlname=SchlaefliGraph | title=Schläfli graph|mode=cs2}}</ref>
* The [[Hoffman–Singleton graph]] is an srg(50, 7, 0, 1).