Content deleted Content added
m clean up |
Elaborating (talk | contribs) Clarifying role of LSH and randomized routing in shared memory implementation/emulation |
||
Line 3:
Hashing-based approximate [[nearest-neighbor search]] algorithms generally use one of two main categories of hashing methods: either data-independent methods, such as locality-sensitive hashing (LSH); or data-dependent methods, such as [[locality-preserving hashing]] (LPH).<ref>{{cite conference |last1=Zhao |first1=Kang |last2=Lu |first2=Hongtao |last3=Mei |first3=Jincheng |title=Locality Preserving Hashing |conference=AAAI Conference on Artificial Intelligence | volume=28 | year=2014 |url=https://ojs.aaai.org/index.php/AAAI/article/view/9133/8992 |pages=2874–2880}}</ref><ref>{{cite book |last1=Tsai |first1=Yi-Hsuan |last2=Yang |first2=Ming-Hsuan |title=2014 IEEE International Conference on Image Processing (ICIP) |chapter=Locality preserving hashing |date=October 2014 |pages=2988–2992 |doi=10.1109/ICIP.2014.7025604 |isbn=978-1-4799-5751-4 |s2cid=8024458 |issn=1522-4880}}</ref>
==Definitions==
Line 51 ⟶ 53:
This is in contrast to [[cryptography|cryptographic]] hash functions and [[checksum]]s, which are designed to have [[Avalanche effect|random output difference between adjacent inputs]].
▲The first family of locality-preserving hash functions was devised as a way to facilitate [[Pipeline (computing)|data pipelining]] in implementations of [[Parallel RAM|parallel random-access machine (PRAM)]] algorithms that use [[universal hashing]] to reduce memory [[Resource contention|contention]] and [[network congestion]].<ref name=Chin1991>{{cite thesis |last=Chin |first=Andrew |date=1991 |title=Complexity Issues in General Purpose Parallel Computing |pages=87–95 |type=DPhil |publisher=University of Oxford |url=https://perma.cc/E47H-WCVP}}</ref><ref name=Chin1994>{{cite journal |last1=Chin |first1=Andrew |date=1994 |title=Locality-Preserving Hash Functions for General Purpose Parallel Computation |url=http://unclaw.com/chin/scholarship/hashfunctions.pdf |journal=Algorithmica |volume=12 |issue=2–3 |pages=170–181 |doi=10.1007/BF01185209|s2cid=18108051 }}</ref>
Locality preserving hashes are related to [[space-filling curve]]s.{{how|date=March 2020}}
Line 110:
</ref>
*[[Digital video fingerprinting]]
*[[Shared memory]] organization in [[parallel computing]]<ref name=Chin1991 /><ref name=Chin1994 />
*Physical data organization in database management systems<ref>
{{citation
|