Midpoint theorem (triangle): Difference between revisions

Content deleted Content added
No edit summary
Tags: Mobile edit Mobile web edit Advanced mobile edit
Added Proof
Tags: Visual edit Mobile edit Mobile web edit
Line 6:
 
The triangle formed by the three parallel lines through the three midpoints of sides of a triangle is called its [[medial triangle]].
==Proof==
{| class="wikitable"
|-
|style="width:800px" valign="top" |[[File:Midpoint Theorem proof.png|thumb|304x304px]]
'''Given''': In a <math>\triangle ABC </math> the points M and N are the midpoints of the sides AB and AC respectively.
 
'''[[Geometric Construction|Construction]]''': MN extended to D where MN=DN, join C to D.
 
'''To Prove''':
*<math>MN\parallel BC</math>
*<math>MN={1\over 2}BC</math>
 
'''Proof''':
*<math>AN=CN</math> (given)
*<math>\angle ANM=\angle CND</math> (vertically opposite angle)
*<math>MN=DN</math> (constructible)
 
Hence by [[Side angle side]].
:<math>\triangle AMN\cong\triangle CDN </math>
 
Therefore, the corresponding sides and angles of congruent triangles are equal
*<math>AM=BM=CD</math>
*<math>\angle MAN=\angle DCN</math>
[[Transversal (geometry)|Transversal]] AC intersects the lines AB and CD and alternate angles ∠MAN and ∠DCN are equal. Therefore
*<math>AM\parallel CD\parallel BM</math>
 
Hence BCDM is a [[parallelogram]]. BC and DM are also equal and parallel.
*<math>MN\parallel BC</math>
*<math>MN={1\over 2}MD={1\over 2}BC</math>
|-
|}
 
==References==