Content deleted Content added
Introduce the variable y before using it |
Give OEIS links for the two constants being discussed |
||
Line 2:
{{Distinguish|Inverse-gamma distribution|Reciprocal gamma function}}
{{Orphan|date=July 2023}}
In [[mathematics]], the '''inverse gamma function''' <math>\Gamma^{-1}(x)</math> is the [[inverse function]] of the [[gamma function]]. In other words, <math>y = \Gamma^{-1}(x)</math> whenever <math display="inline">\Gamma(y)=x</math>. For example, <math>\Gamma^{-1}(24)=5</math>.<ref>{{Cite journal |last1=Borwein |first1= Jonathan M. |last2=Corless |first2= Robert M.|title=Gamma and Factorial in the Monthly |journal=The American Mathematical Monthly |year=2017 |volume= 125 |issue= 5 |pages= 400–424 |doi= 10.1080/00029890.2018.1420983 |arxiv=1703.05349 |jstor=48663320|s2cid= 119324101 }}</ref> Usually, the inverse gamma function refers to the principal branch with ___domain on the real interval <math>\left
|jstor=41505586 |s2cid=85549521 |access-date=20 March 2023|doi-access=free }}</ref>
[[File:Inverse Gamma Function.png|thumb]]
|