Content deleted Content added
m Regpath moved page Regularization perspectives on support-vector machines to Regularization perspectives on support vector machines over redirect |
Citation bot (talk | contribs) Alter: title. Add: chapter. | Use this bot. Report bugs. | #UCB_CommandLine |
||
Line 12:
where <math>\mathcal{H}</math> is a [[hypothesis space]]<ref>A hypothesis space is the set of functions used to model the data in a machine-learning problem. Each function corresponds to a hypothesis about the structure of the data. Typically the functions in a hypothesis space form a [[Hilbert space]] of functions with norm formed from the loss function.</ref> of functions, <math>V \colon \mathbf Y \times \mathbf Y \to \mathbb R</math> is the loss function, <math>\|\cdot\|_\mathcal H</math> is a [[norm (mathematics)|norm]] on the hypothesis space of functions, and <math>\lambda \in \mathbb R</math> is the [[regularization parameter]].<ref>For insight on choosing the parameter, see, e.g., {{cite journal |last=Wahba |first=Grace |author2=Yonghua Wang |title=When is the optimal regularization parameter insensitive to the choice of the loss function |journal=Communications in Statistics – Theory and Methods |year=1990 |volume=19 |issue=5 |pages=1685–1700 |doi=10.1080/03610929008830285 }}</ref>
When <math>\mathcal{H}</math> is a [[reproducing kernel Hilbert space]], there exists a [[kernel function]] <math>K \colon \mathbf X \times \mathbf X \to \mathbb R</math> that can be written as an <math>n \times n</math> [[symmetric]] [[Positive-definite kernel|positive-definite]] [[matrix (mathematics)|matrix]] <math>\mathbf K</math>. By the [[representer theorem]],<ref>See {{cite book |last=Scholkopf |first=Bernhard |author2=Ralf Herbrich |author3=Alex Smola |title=Computational Learning Theory |chapter=A Generalized Representer Theorem |journal=Computational Learning Theory: Lecture Notes in Computer Science |year=2001 |volume=2111 |pages=416–426 |doi=10.1007/3-540-44581-1_27 |series=Lecture Notes in Computer Science |isbn=978-3-540-42343-0 |citeseerx=10.1.1.42.8617 }}</ref>
: <math>f(x_i) = \sum_{j=1}^n c_j \mathbf K_{ij}, \text{ and } \|f\|^2_{\mathcal H} = \langle f, f\rangle_\mathcal H = \sum_{i=1}^n \sum_{j=1}^n c_i c_jK(x_i, x_j) = c^T \mathbf K c.</math>
|