Content deleted Content added
two images added |
Added some more information from one of the references |
||
Line 4:
: <math>\mathbf{J}_\nu(z)=\frac{1}{\pi} \int_0^\pi \cos (\nu\theta-z\sin\theta) \,d\theta</math>
The '''Weber function''' (also known as '''[[Eugen von Lommel|Lommel]]–Weber function'''), introduced by {{harvs|txt|authorlink=Heinrich Friedrich Weber|first=H. F.|last=Weber|year=1879}}, is a closely related function defined by
Line 68:
==References==
{{Reflist}}
{{Refbegin}}
*{{AS ref|12|498}}
*C.T. Anger, Neueste Schr. d. Naturf. d. Ges. i. Danzig, 5 (1855) pp. 1–29
▲*{{springer|id=A/a012490|title=Anger function|first=A.P.|last= Prudnikov|authorlink=Anatolii Platonovich Prudnikov}}
*{{springer|id=W/w097320|title=Weber function|first=A.P.|last= Prudnikov}}
*[[G.N. Watson]], "A treatise on the theory of Bessel functions", 1–2, Cambridge Univ. Press (1952)
*H.F. Weber, Zurich Vierteljahresschrift, 24 (1879) pp. 33–76
{{
[[Category:Special functions]]
|