Cell-based models: Difference between revisions

Content deleted Content added
Added free to read link in citations with OAbot #oabot
Citation bot (talk | contribs)
Alter: title. Add: chapter. | Use this bot. Report bugs. | #UCB_CommandLine
Line 17:
Off-lattice models allow for continuous movement of cells in space and evolve the system in time according to [[force]] laws governing the mechanical interactions between the individual cells. Examples of off-lattice models are center-based models,<ref>{{cite journal | vauthors = Osborne JM, Fletcher AG, Pitt-Francis JM, Maini PK, Gavaghan DJ | title = Comparing individual-based approaches to modelling the self-organization of multicellular tissues | journal = PLOS Computational Biology | volume = 13 | issue = 2 | pages = e1005387 | date = February 2017 | pmid = 28192427 | pmc = 5330541 | doi = 10.1371/journal.pcbi.1005387 | veditors = Nie Q | bibcode = 2017PLSCB..13E5387O | doi-access = free }}</ref> vertex-based models,<ref name=":0" /> models
based on the [[immersed boundary method]]<ref>{{cite journal | vauthors = Rejniak KA | title = An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development | journal = Journal of Theoretical Biology | volume = 247 | issue = 1 | pages = 186–204 | date = July 2007 | pmid = 17416390 | doi = 10.1016/j.jtbi.2007.02.019 | bibcode = 2007JThBi.247..186R }}</ref> and the subcellular element
method.<ref>{{cite book | vauthors = Newman TJ | title = Single-Cell-Based Models in Biology and Medicine | chapter = Modeling multicellularMulticellular Structures Using systemsthe usingSubcellular subcellularElement elementsModel | journal = Mathematical Biosciences and Engineering | volume = 2 | issue = 3 | pages = 613–24 | date = July 2005 | pmid = 20369943 | doi = 10.1007/978-3-7643-8123-3_10 | series = Mathematics and Biosciences in Interaction | isbn = 978-3-7643-8101-1 }}</ref> They differ mainly in the level of detail with which they represent the
cell shape. As a consequence they vary in their ability to capture different biological mechanisms, the effort needed to extend them from two- to three-dimensional models and also in their computational cost.<ref>{{cite journal | vauthors = Osborne JM, Fletcher AG, Pitt-Francis JM, Maini PK, Gavaghan DJ | title = Comparing individual-based approaches to modelling the self-organization of multicellular tissues | journal = PLOS Computational Biology | volume = 13 | issue = 2 | pages = e1005387 | date = February 2017 | pmid = 28192427 | pmc = 5330541 | doi = 10.1371/journal.pcbi.1005387 | bibcode = 2017PLSCB..13E5387O | doi-access = free }}</ref>