Inverse gamma function: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Removed proxy/dead URL that duplicated identifier. Removed access-date with no URL. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox3 | #UCB_webform_linked 844/1947
The description of the Borel measure is misleading, since talking about "The Borel" measure is not right, mu is just "a Borel" measure to be found (according to the referenced paper.) and fixed citation.
Line 2:
{{Distinguish|Inverse-gamma distribution|Reciprocal gamma function}}
{{Orphan|date=July 2023}}
In [[mathematics]], the '''inverse gamma function''' <math>\Gamma^{-1}(x)</math> is the [[inverse function]] of the [[gamma function]]. In other words, <math>y = \Gamma^{-1}(x)</math> whenever <math display="inline">\Gamma(y)=x</math>. For example, <math>\Gamma^{-1}(24)=5</math>.<ref>{{Citecite journal |last1=Borwein |first1= Jonathan M. |last2=Corless |first2= Robert M.|title=Gamma and Factorial in the Monthly |journal=The American Mathematical Monthly |year=2017 |volume= 125 |issue= 5 |pages= 400–424 |doi= 10.1080/00029890.2018.1420983 |arxiv=1703.05349 |jstor=48663320 |s2cid= 119324101 }}</ref> Usually, the inverse gamma function refers to the principal branch with ___domain on the real interval <math>\left[\beta, +\infty\right)</math> and image on the real interval <math>\left[\alpha, +\infty\right)</math>, where <math>\beta = 0.8856031\ldots</math><ref>{{oeis|A030171}}</ref> is the minimum value of the gamma function on the positive real axis and <math>\alpha = \Gamma^{-1}(\beta) = 1.4616321\ldots</math><ref>{{oeis|A030169}}</ref> is the ___location of that minimum.<ref>{{cite journal |last1=Uchiyama |first1=Mitsuru |title=The principal inverse of the gamma function |date=April 2012 |journal=Proceedings of the American Mathematical Society|volume=140 |issue=4 |pages=1347 |doi= 10.1090/S0002-9939-2011-11023-2
|jstor=41505586 |s2cid=85549521 |doi-access=free }}</ref>
 
Line 9:
== Definition ==
The inverse gamma function may be defined by the following integral representation<ref>{{cite journal |last1=Pedersen |first1=Henrik |title="Inverses of gamma functions" |journal=Constructive Approximation |date=9 September 2013 |volume=7 |issue=2 |pages=251–267 |doi=10.1007/s00365-014-9239-1 |arxiv=1309.2167 |s2cid=253898042 |url=https://link.springer.com/article/10.1007/s00365-014-9239-1}}</ref>
<math display="block">\Gamma^{-1}(x)=a+bx+\int_{-\infty}^{\Gamma(\alpha)}\left(\frac{1}{x-t}-\frac{t}{t^{2}-1}\right)d\mu(t) </math>
 
Where <math>\mu (t)</math> is a [[Borel measure|Borel measure]] such that <math display="block">\int_{-\infty}^{\Gamma\left(\alpha\right)}\left(\frac{1}{t^{2}+1}\right)d\mu(t)<\infty \,,</math>, and <math>a</math> and <math>b</math> are real numbers with <math>b\geqq0</math>, and <math>\mugeqq (t)0</math> is the [[Borel measure|Borel Meausure]].
 
== Approximation ==
To compute the branches of the inverse gamma function one can first compute the Taylor series of <math>\Gamma(x)</math> near <math>\alpha</math>. The series can then be truncated and inverted, which yields successively better approximations to <math>\Gamma^{-1}(x)</math>. For instance, we have the quadratic approximation:<ref>{{cite bookconference |first1=Robert M.|last1=Corless |first2=Folitse Komla|last2=Amenyou |last3=Jeffrey |first3=David |book-title=2017 19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) |chaptertitle=Properties and Computation of the Functional Inverse of Gamma |journalconference=International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) |date=2017 |pages=65 |doi=10.1109/SYNASC.2017.00020|isbn=978-1-5386-2626-9 |s2cid=53287687 }}</ref>
 
<math>