Content deleted Content added
m Spelling, changed empy->empty |
→General metric and topological spaces: equation/proposition anchoring and linking Tags: nowiki added 2017 wikitext editor |
||
Line 120:
=== General metric and topological spaces ===
The intermediate value theorem is closely linked to the [[topology|topological]] notion of [[Connectedness (topology)|connectedness]] and follows from the basic properties of connected sets in metric spaces and connected subsets of '''R''' in particular:
* If <math>X</math> and <math>Y</math> are [[metric space]]s, <math>f \colon X \to Y</math> is a continuous map, and <math>E \subset X</math> is a [[Connected space|connected]] subset, then <math>f(E)</math> is connected. ({{EquationRef|<
* A subset <math>E \subset \R</math> is connected if and only if it satisfies the following property: <math>x,y\in E,\ x < r < y \implies r \in E</math>. ({{EquationRef|<
In fact, connectedness is a [[topological property]] and
Recall the first version of the intermediate value theorem, stated previously:
{{math theorem|name=Intermediate value theorem|note=''Version I''|math_statement=Consider a closed interval <math>I = [a,b]</math> in the real numbers <math>\R</math> and a continuous function <math>f\colon I\to\R</math>. Then, if <math> u</math> is a real number such that <math>\min(f(a),f(b))< u < \max(f(a),f(b))</math>, there exists <math>c \in (a,b)</math> such that <math>f(c) = u</math>.}}
The intermediate value theorem is an immediate consequence of these two properties of connectedness:<ref>{{Cite book| url=https://archive.org/details/1979RudinW|title=Principles of Mathematical Analysis| last=Rudin|first=Walter| publisher=McGraw-Hill|year=1976|isbn=978-0-07-054235-8|___location=New York|pages=42, 93}}</ref>
{{math proof|proof= By
The intermediate value theorem generalizes in a natural way: Suppose that {{mvar|X}} is a connected topological space and {{math|(''Y'', <)}} is a [[total order|totally ordered]] set equipped with the [[order topology]], and let {{math|''f'' : ''X'' → ''Y''}} be a continuous map. If {{mvar|a}} and {{mvar|b}} are two points in {{mvar|X}} and {{mvar|u}} is a point in {{mvar|Y}} lying between {{math|''f''(''a'')}} and {{math|''f''(''b'')}} with respect to {{math|<}}, then there exists {{mvar|c}} in {{mvar|X}} such that {{math|1=''f''(''c'') = ''u''}}. The original theorem is recovered by noting that {{math|'''R'''}} is connected and that its natural [[Topological space|topology]] is the order topology.
|