Content deleted Content added
Tags: Reverted Visual edit |
No edit summary Tags: Reverted Visual edit |
||
Line 1:
de, the [[latent variable]], latent representation, latent vector, etc. Conversely, for any <math>z\in \mathcal Z</math>, we usually write <math>x' = D_\theta(z)</math>, and refer to it as the (decoded) message.
Usually, both the encoder and the decoder are defined as [[multilayer perceptron]]s. For example, a one-layer-MLP encoder <math>E_\phi</math> is:
Line 35 ⟶ 22:
The simplest way to perform the copying task perfectly would be to duplicate the signal. To suppress this behavior, the code space <math>\mathcal Z</math> usually has fewer dimensions than the message space <math>\mathcal{X}</math>.
Such an autoencoder is called ''undercomplete''. It can be interpreted as [[Data compression|compressing]] the message, or [[Dimensionality reduction|reducing its dimensionality]].<ref name=":12">{{cite journal |last1=Kramer |first1=Mark A. |date=1991 |title=Nonlinear principal component analysis using autoassociative neural networks |url=https://www.researchgate.net/profile/Abir_Alobaid/post/To_learn_a_probability_density_function_by_using_neural_network_can_we_first_estimate_density_using_nonparametric_methods_then_train_the_network/attachment/59d6450279197b80779a031e/AS:451263696510979@1484601057779/download/NL+PCA+by+using+ANN.pdf |journal=AIChE Journal |volume=37 |issue=2 |pages=233–243 |doi=10.1002/aic.690370209}}</ref><ref name=":7" />
At the limit of an ideal undercomplete autoencoder, every possible code <math>z</math> in the code space is used to encode a message <math>x</math> that really appears in the distribution <math>\mu_{ref}</math>, and the decoder is also perfect: <math>D_\theta(E_\phi(x)) = x</math>. This ideal autoencoder can then be used to generate messages indistinguishable from real messages, by feeding its decoder arbitrary code <math>z</math> and obtaining <math>D_\theta(z)</math>, which is a message that really appears in the distribution <math>\mu_{ref}</math>.
Line 163 ⟶ 150:
=== Anomaly detection ===
Another application for autoencoders is [[anomaly detection]].<ref name=":13">{{Cite journal |last=Kramer |first=M. A. |date=1992-04-01 |title=Autoassociative neural networks |url=https://dx.doi.org/10.1016/0098-1354%2892%2980051-A |journal=Computers & Chemical Engineering |series=Neutral network applications in chemical engineering |language=en |volume=16 |issue=4 |pages=313–328 |doi=10.1016/0098-1354(92)80051-A |issn=0098-1354}}</ref><ref>{{Cite book |last1=Morales-Forero |first1=A. |last2=Bassetto |first2=S. |title=2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) |chapter=Case Study: A Semi-Supervised Methodology for Anomaly Detection and Diagnosis |date=December 2019 |chapter-url=https://ieeexplore.ieee.org/document/8978509 |___location=Macao, Macao |publisher=IEEE |pages=1031–1037 |doi=10.1109/IEEM44572.2019.8978509 |isbn=978-1-7281-3804-6|s2cid=211027131 }}</ref><ref>{{Cite book |last1=Sakurada |first1=Mayu |last2=Yairi |first2=Takehisa |title=Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis |chapter=Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction |date=December 2014 |chapter-url=http://dl.acm.org/citation.cfm?doid=2689746.2689747 |language=en |___location=Gold Coast, Australia QLD, Australia |publisher=ACM Press |pages=4–11 |doi=10.1145/2689746.2689747 |isbn=978-1-4503-3159-3|s2cid=14613395 }}</ref><ref name=":8">An, J., & Cho, S. (2015). [http://dm.snu.ac.kr/static/docs/TR/SNUDM-TR-2015-03.pdf Variational Autoencoder based Anomaly Detection using Reconstruction Probability]. ''Special Lecture on IE'', ''2'', 1-18.</ref><ref>{{Cite book |last1=Zhou |first1=Chong |last2=Paffenroth |first2=Randy C. |title=Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining |chapter=Anomaly Detection with Robust Deep Autoencoders |date=2017-08-04 |chapter-url=https://dl.acm.org/doi/10.1145/3097983.3098052 |language=en |publisher=ACM |pages=665–674 |doi=10.1145/3097983.3098052 |isbn=978-1-4503-4887-4|s2cid=207557733 }}</ref><ref>{{Cite journal|doi=10.1016/j.patrec.2017.07.016|title=A study of deep convolutional auto-encoders for anomaly detection in videos|year=2018|last1=Ribeiro|first1=Manassés|last2=Lazzaretti|first2=André Eugênio|last3=Lopes|first3=Heitor Silvério|journal=Pattern Recognition Letters|volume=105|pages=13–22|bibcode=2018PaReL.105...13R}}</ref> By learning to replicate the most salient features in the training data under some of the constraints described previously, the model is encouraged to learn to precisely reproduce the most frequently observed characteristics. When facing anomalies, the model should worsen its reconstruction performance. In most cases, only data with normal instances are used to train the autoencoder; in others, the frequency of anomalies is small compared to the observation set so that its contribution to the learned representation could be ignored. After training, the autoencoder will accurately reconstruct "normal" data, while failing to do so with unfamiliar anomalous data.<ref name=":8" /> Reconstruction error (the error between the original data and its low dimensional reconstruction) is used as an anomaly score to detect anomalies.<ref name=":8" />
Recent literature has however shown that certain autoencoding models can, counterintuitively, be very good at reconstructing anomalous examples and consequently not able to reliably perform anomaly detection.<ref>{{cite arXiv|last1=Nalisnick|first1=Eric|last2=Matsukawa|first2=Akihiro|last3=Teh|first3=Yee Whye|last4=Gorur|first4=Dilan|last5=Lakshminarayanan|first5=Balaji|date=2019-02-24|title=Do Deep Generative Models Know What They Don't Know?|class=stat.ML|eprint=1810.09136}}</ref><ref>{{Cite journal|last1=Xiao|first1=Zhisheng|last2=Yan|first2=Qing|last3=Amit|first3=Yali|date=2020|title=Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder|url=https://proceedings.neurips.cc/paper/2020/hash/eddea82ad2755b24c4e168c5fc2ebd40-Abstract.html|journal=Advances in Neural Information Processing Systems|language=en|volume=33|arxiv=2003.02977}}</ref>
|