Content deleted Content added
No edit summary |
Radiotrefoil (talk | contribs) m →Mechanism: link to subsurface scattering |
||
Line 27:
Diffuse reflection from solids is generally not due to surface roughness. A flat surface is indeed required to give specular reflection, but it does not prevent diffuse reflection. A piece of highly polished white marble remains white; no amount of polishing will turn it into a mirror. Polishing produces some specular reflection, but the remaining light continues to be diffusely reflected.
The most general mechanism by which a surface gives diffuse reflection does not involve ''exactly'' the surface: most of the light is contributed by [[Subsurface scattering|scattering centers beneath the surface]],<ref>P.Hanrahan and W.Krueger (1993), ''Reflection from layered surfaces due to subsurface scattering'', in [http://www.cs.berkeley.edu/~ravir/6998/papers/p165-hanrahan.pdf SIGGRAPH ’93 Proceedings, J. T. Kajiya, Ed., vol. 27, pp. 165–174] {{webarchive|url=https://web.archive.org/web/20100727005751/http://www.cs.berkeley.edu/~ravir/6998/papers/p165-hanrahan.pdf |date=2010-07-27 }}.</ref><ref>H.W.Jensen et al. (2001), ''A practical model for subsurface light transport'', in '[http://www.cs.berkeley.edu/~ravir/6998/papers/p511-jensen.pdf Proceedings of ACM SIGGRAPH 2001', pp. 511–518] {{webarchive|url=https://web.archive.org/web/20100727005456/http://www.cs.berkeley.edu/~ravir/6998/papers/p511-jensen.pdf |date=2010-07-27 }}</ref> as illustrated in Figure 1.
If one were to imagine that the figure represents snow, and that the polygons are its (transparent) ice crystallites, an impinging ray is partially reflected (a few percent) by the first particle, enters in it, is again reflected by the interface with the second particle, enters in it, impinges on the third, and so on, generating a series of "primary" scattered rays in random directions, which, in turn, through the same mechanism, generate a large number of "secondary" scattered rays, which generate "tertiary" rays, and so forth.<ref>Only primary and secondary rays are represented in the figure.</ref> All these rays walk through the snow crystallites, which do not absorb light, until they arrive at the surface and exit in random directions.<ref>Or, if the object is thin, it can exit from the opposite surface, giving diffuse transmitted light.</ref> The result is that the light that was sent out is returned in all directions, so that snow is white despite being made of transparent material (ice crystals).
|