Content deleted Content added
mNo edit summary |
Added introduction section, added citations, fixed some tone/grammar issues, changed the '100,000 times faster' statistic out in favour of a statistic that I could find a reliable source for. |
||
Line 2:
{{Multiple issues|{{More citations needed|date=December 2019}}{{original research|date=December 2019}}{{tone|date=January 2021}}}}
In [[cryptography]], a '''memory-hard function''' (MHF) is a function that costs a significant amount of [[random-access memory|memory]] to efficiently evaluate.<ref name=":0">{{Cite thesis |title=Memory-Hard Functions: When Theory Meets Practice |url=https://escholarship.org/uc/item/7x4630qv |publisher=UC Santa Barbara |date=2019 |language=en |first=Binyi |last=Chen}}</ref> It differs from a [[memory-bound function]], which incurs cost by slowing down computation through memory latency.<ref>{{Cite journal |last=Dwork |first=Cynthia |last2=Goldberg |first2=Andrew |last3=Naor |first3=Moni |date=2003 |editor-last=Boneh |editor-first=Dan |title=On Memory-Bound Functions for Fighting Spam |url=https://link.springer.com/chapter/10.1007/978-3-540-45146-4_25 |journal=Advances in Cryptology - CRYPTO 2003 |series=Lecture Notes in Computer Science |language=en |___location=Berlin, Heidelberg |publisher=Springer |pages=426–444 |doi=10.1007/978-3-540-45146-4_25 |isbn=978-3-540-45146-4}}</ref> MHFs can be used as [[proof of work]].<ref name=":1">{{Cite web |last=LIU |first=ALEC |date=2013-11-29 |title=Beyond Bitcoin: A Guide to the Most Promising Cryptocurrencies |url=https://www.vice.com/en/article/4x3ywn/beyond-bitcoin-a-guide-to-the-most-promising-cryptocurrencies |access-date=2023-09-30 |website=Vice |language=en}}</ref>
== Introduction ==
MHFs are designed to consume large amounts of memory on a computer in order to reduce the effectiveness of [[parallel computing]]. In order to evaluate the function using less memory, a significant time penalty is incurred. As each MHF computation requires a large amount of memory, the number of function computations that can occur simultaneously is limited by the amount of available memory. This reduces the efficiency of specialised hardware, such as [[application-specific integrated circuit]]s and [[Graphics processing unit|graphics processing units]], which utilise parallelisation, in computing a MHF for a large number of inputs, such as when [[Brute-force attack|brute-forcing]] password hashes or [[Cryptocurrency|mining cryptocurrency]].<ref name=":0" /><ref name=":2">{{Cite journal |last=Biryukov |first=Alex |last2=Khovratovich |first2=Dmitry |date=2015 |editor-last=Iwata |editor-first=Tetsu |editor2-last=Cheon |editor2-first=Jung Hee |title=Tradeoff Cryptanalysis of Memory-Hard Functions |url=https://link.springer.com/chapter/10.1007/978-3-662-48800-3_26 |journal=Advances in Cryptology – ASIACRYPT 2015 |series=Lecture Notes in Computer Science |language=en |___location=Berlin, Heidelberg |publisher=Springer |pages=633–657 |doi=10.1007/978-3-662-48800-3_26 |isbn=978-3-662-48800-3}}</ref>
== Memory hard measure ==
Line 9 ⟶ 12:
Other viable measures include integrating memory against physical time and measuring memory [[bandwidth (computing)|bandwidth]] consumption on a memory bus.<ref>(BR18) Blocki, Ren, [https://eprint.iacr.org/2018/221.pdf ''Bandwidth-Hard Functions: Reductions and Lower Bounds''], 2018</ref> Functions requiring high memory bandwidth are sometimes referred to as "bandwidth-hard functions".<ref>{{Cite web |last1=Blocki |first1=Jeremiah |last2=Liu |first2=Peiyuan |last3=Ren |first3=Ling |last4=Zhou |first4=Samson |date=2022 |title=Bandwidth-Hard Functions: Reductions and Lower Bounds |url=https://eprint.iacr.org/2018/221.pdf |url-status=live |archive-url=https://web.archive.org/web/20230112040047/https://eprint.iacr.org/2018/221.pdf |archive-date=2023-01-12 |access-date=2023-01-11 |website=[[Cryptology ePrint Archive]]}}</ref>
== Motivation and Examples ==
== Variants ==
MHFs can be categorized into two different groups based on their evaluation patterns: data-dependent memory-hard functions (dMHF) and data-independent memory-hard functions (iMHF). As opposed to iMHFs, the
A notable problem
==References==
|