Content deleted Content added
m Fixed misspelling of Dougal MacLaurin's name. |
|||
Line 109:
For specific learning algorithms, it is possible to compute the gradient with respect to hyperparameters and then optimize the hyperparameters using [[gradient descent]]. The first usage of these techniques was focused on neural networks.<ref>{{cite book |last1=Larsen|first1=Jan|last2= Hansen |first2=Lars Kai|last3=Svarer|first3=Claus|last4=Ohlsson|first4=M|title=Neural Networks for Signal Processing VI. Proceedings of the 1996 IEEE Signal Processing Society Workshop |chapter=Design and regularization of neural networks: The optimal use of a validation set |date=1996|pages=62–71|doi=10.1109/NNSP.1996.548336|isbn=0-7803-3550-3|citeseerx=10.1.1.415.3266|s2cid=238874|chapter-url=http://orbit.dtu.dk/files/4545571/Svarer.pdf}}</ref> Since then, these methods have been extended to other models such as [[support vector machine]]s<ref>{{cite journal |author1=Olivier Chapelle |author2=Vladimir Vapnik |author3=Olivier Bousquet |author4=Sayan Mukherjee |title=Choosing multiple parameters for support vector machines |journal=Machine Learning |year=2002 |volume=46 |pages=131–159 |url=http://www.chapelle.cc/olivier/pub/mlj02.pdf | doi = 10.1023/a:1012450327387 |doi-access=free }}</ref> or logistic regression.<ref>{{cite journal |author1 =Chuong B|author2= Chuan-Sheng Foo|author3=Andrew Y Ng|journal = Advances in Neural Information Processing Systems |volume=20|title = Efficient multiple hyperparameter learning for log-linear models|year =2008|url=http://papers.nips.cc/paper/3286-efficient-multiple-hyperparameter-learning-for-log-linear-models.pdf}}</ref>
A different approach in order to obtain a gradient with respect to hyperparameters consists in differentiating the steps of an iterative optimization algorithm using [[automatic differentiation]].<ref>{{cite journal|last1=Domke|first1=Justin|title=Generic Methods for Optimization-Based Modeling|journal=Aistats|date=2012|volume=22|url=http://www.jmlr.org/proceedings/papers/v22/domke12/domke12.pdf|access-date=2017-12-09|archive-date=2014-01-24|archive-url=https://web.archive.org/web/20140124182520/http://jmlr.org/proceedings/papers/v22/domke12/domke12.pdf|url-status=dead}}</ref><ref name=abs1502.03492>{{cite arXiv |last1=Maclaurin|first1=
In a different approach,<ref>Lorraine, J., & Duvenaud, D. (2018). [[arxiv:1802.09419|Stochastic hyperparameter optimization through hypernetworks]]. ''arXiv preprint arXiv:1802.09419''.</ref> a hypernetwork is trained to approximate the best response function. One of the advantages of this method is that it can handle discrete hyperparameters as well. Self-tuning networks<ref>MacKay, M., Vicol, P., Lorraine, J., Duvenaud, D., & Grosse, R. (2019). [[arxiv:1903.03088|Self-tuning networks: Bilevel optimization of hyperparameters using structured best-response functions]]. ''arXiv preprint arXiv:1903.03088''.</ref> offer a memory efficient version of this approach by choosing a compact representation for the hypernetwork. More recently, Δ-STN<ref>Bae, J., & Grosse, R. B. (2020). [[arxiv:2010.13514|Delta-stn: Efficient bilevel optimization for neural networks using structured response jacobians]]. ''Advances in Neural Information Processing Systems'', ''33'', 21725-21737.</ref> has improved this method further by a slight reparameterization of the hypernetwork which speeds up training. Δ-STN also yields a better approximation of the best-response Jacobian by linearizing the network in the weights, hence removing unnecessary nonlinear effects of large changes in the weights.
|