Banach fixed-point theorem: Difference between revisions

Content deleted Content added
m bold keywords should not be wikilinks
Tags: Mobile edit Mobile web edit
Line 3:
 
==Statement==
''Definition.'' Let <math>(X, d)</math> be a [[complete metric space]]. Then a map <math>T : X \to X</math> is called a [[contraction mapping]] on ''X'' if there exists <math>q \in [0, 1)</math> such that
:<math>d(T(x),T(y)) \le q d(x,y)</math>
for all <math>x, y \in X.</math>