Geotechnical engineering: Difference between revisions

Content deleted Content added
m Reverted 1 edit by 195.194.208.201 (talk) to last revision by HeyElliott
Geotechnical investigation: ERT as investigation method
Line 30:
[https://engineeringfactsz.com/how-to-become-a-geotechnical-engineer/ Geotechnical engineers] investigate and determinate the properties of subsurface conditions and materials. They also design corresponding [[Earthworks (engineering)|earthworks]] and [[Retaining wall|retaining structures]], [[tunnel]]s, and structure [[foundation (engineering)|foundations]], and may supervise and evaluate sites, which may further involve site monitoring as well as the risk assessment and mitigation of [[natural hazard]]s.<ref name="TerzaghiPeckMesri">Terzaghi, K., Peck, R.B. and Mesri, G. (1996), ''Soil Mechanics in Engineering Practice'' 3rd Ed., John Wiley & Sons, Inc. {{ISBN|0-471-08658-4}}</ref><ref name="HoltzKovacs">Holtz, R. and Kovacs, W. (1981), ''An Introduction to Geotechnical Engineering'', Prentice-Hall, Inc. {{ISBN|0-13-484394-0}}</ref>
 
Geotechnical engineers and engineering geologists perform geotechnical investigations to obtain information on the [[Physical property|physical properties]] of soil and rock underlying, and adjacent to, a site to design earthworks and foundations for proposed structures and for the repair of distress to earthworks and structures caused by subsurface conditions. Geotechnical investigations involve both surface and subsurface exploration of a site, often including subsurface sampling and laboratory testing of soil samples retrieved. Sometimes, [[Exploration geophysics|geophysical methods]] are also used to obtain data, which include measurement of [[seismic waves]] (pressure, shear, and [[Rayleigh waves]]), surface-wave methods and downhole methods, and [[Prospecting|electromagnetic surveys]] (magnetometer, [[Electrical resistivity and conductivity|resistivity]], and [[ground-penetrating radar]]). [[Electrical resistivity tomography|Electrical tomography]] can be used to survey soil and rock properties and existing underground infrastructure in construction projects.<ref>Deep Scan Tech (2023): [https://www.deepscantech.com/news/deep-scan-tech-uncovers-hidden-structures-at-the-site-of-denmarks-tallest-building.html Deep Scan Tech uncovers hidden structures at the site of Denmark's tallest building].</ref>
 
Surface [[exploration]] can include on-foot surveys, [[geologic map]]ping, [[Exploration geophysics|geophysical methods]], and [[photogrammetry]]. Geologic mapping and interpretation of [[geomorphology]] are typically completed in consultation with a [[geologist]] or [[engineering geologist]]. Subsurface exploration usually involves in-situ testing (for example, the [[standard penetration test]] and [[cone penetration test]]). The digging of test pits and trenching (particularly for locating [[Fault (geology)|faults]] and [[landslide|slide planes]]) may also be used to learn about soil conditions at depth. Large-diameter borings are rarely used due to safety concerns and expense but are sometimes used to allow a geologist or engineer to be lowered into the borehole for direct visual and manual examination of the soil and rock [[stratigraphy]].