Content deleted Content added
No edit summary |
|||
Line 51:
===Quantum computation with a negative delay===
Physicist [[David Deutsch]] showed in 1991 that this model<!-- details required --> of computation could solve NP problems in [[Time complexity#Polynomial time|polynomial time]],<ref name="Deutsch1991">{{cite journal | first=David | last=Deutsch | url= http://journals.aps.org/prd/abstract/10.1103/PhysRevD.44.3197 | title= Quantum mechanics near closed timelike lines | journal = Physical Review D | volume = 44 | issue = 10 | year=1991 | doi= 10.1103/PhysRevD.44.3197 | pages=3197–3217 | bibcode=1991PhRvD..44.3197D | pmid= 10013776}}</ref> and [[Scott Aaronson]] later extended this result to show that the model could also be used to solve [[PSPACE]] problems in polynomial time.<ref>{{cite journal|journal=Scientific American|date=March 2008 | first= Scott | last= Aaronson| title= The Limits of Quantum Computers |volume=298 |issue=3 |pages=68–69 |doi=10.1038/scientificamerican0308-62 |pmid=18357822 |bibcode=2008SciAm.298c..62A |url= http://www.scottaaronson.com/writings/limitsqc-draft.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www.scottaaronson.com/writings/limitsqc-draft.pdf |archive-date=2022-10-09 |url-status=live | via= scottaaronson.com }}</ref><ref>{{cite journal | first1= Scott | last1= Aaronson | first2= John |last2= Watrous | url=http://www.scottaaronson.com/papers/ctc.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www.scottaaronson.com/papers/ctc.pdf |archive-date=2022-10-09 |url-status=live | title=Closed Timelike Curves Make Quantum and Classical Computing Equivalent | journal = Proceedings of the Royal Society A | volume = 465 | year=2009 | issue = 2102 | doi= 10.1098/rspa.2008.0350 | pages= 631–647 | bibcode=2009RSPSA.465..631A|arxiv = 0808.2669 | s2cid= 745646 | via= scottaaronson.com}}</ref> Deutsch shows that quantum computation with a negative delay—backwards time travel—produces only self-consistent solutions, and the chronology-violating region imposes constraints that are not apparent through classical reasoning.<ref name="Deutsch1991" /> Researchers published in 2014 a simulation in which they claim to have validated Deutsch's model with photons.<ref name=RingbauerEtAl2014>{{cite journal| first1= Martin | last1= Ringbauer | first2= Matthew A. | last2= Broome | first3= Casey R. | last3= Myers | first4= Andrew G. | last4= White | first5= Timothy C. | last5= Ralph|title=Experimental simulation of closed timelike curves|journal=Nature Communications| date= 19 June 2014| volume= 5| doi= 10.1038/ncomms5145|arxiv = 1501.05014 |bibcode = 2014NatCo...5.4145R| pmid= 24942489| page= 4145| s2cid= 12779043 }}</ref> However, it was shown in an article by Tolksdorf and Verch that Deutsch's self-consistency condition can be fulfilled to arbitrary precision in any quantum system described according to relativistic [[quantum field theory]] even on spacetimes which do not admit closed timelike curves, casting doubts on whether Deutsch's model is really characteristic of quantum processes simulating closed timelike curves in the sense of [[general relativity]].<ref>{{cite journal
| last1 = Tolksdorf
| first1 = Juergen
|