Ray transfer matrix analysis: Difference between revisions

Content deleted Content added
Rv change in notation.
Relation between geometrical ray optics and wave optics: Make notation here consistent with the rest of the article
Line 146:
|Quadratic phase factor
|<math>\begin{pmatrix} 1 & 0\\ c & 1 \end{pmatrix} </math>
|<math>Q[c]=\exp ji \frac{k_{0}}{2} c x^{2}</math>
|<math>k_0</math>: wave number
|-
|Fresnel free-space-propagation operator
|<math>\begin{pmatrix} 1 & d\\ 0 & 1 \end{pmatrix} </math>
|<math>\mathcal{R}[d]\left\{U\left(x_{1}\right)\right\}=\frac{1}{\sqrt{ji \lambda d}} \int_{-\infty}^{\infty} U\left(x_{1}\right) e^{ji \frac{k}{2 d}\left(x_{2}-x_{1}\right)^{2}} d x_1 </math>
|<math>x_1 </math>: coordinate of the source
<math>x_2 </math>: coordinate of the goal
Line 157:
|Normalized Fourier-transform operator
|<math>\begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} </math>
|<math>\mathcal{F}=\left(ji \lambda_{0}\right)^{-1 / 2} \int_{-\infty}^{\infty} d x\left[\exp \left(ji k_{0} p x\right)\right] \ldots </math>
|
|}