Content deleted Content added
Started bolding vectors to be more consistent with other linear algebra pages |
→The Algorithm: Bolding vectors |
||
Line 21:
# Choose an initial guess <math>{\bold x}_0</math>
# <math>
# Choose <math>\tilde
# For <math>i = 1, 2, 3, \dots</math> do:
## <math>\rho_{i-1} = \tilde {\bold r}^T_{i-1}
## If <math>\rho_{i-1} = 0</math>, the method fails.
## If <math>i=1</math>:
### <math>
## Else:
### <math>\beta_{i-1} = \rho_{i-1}/\rho_{i-2}</math>
### <math>
### <math>
## Solve <math>M\hat {\bold p}=
## <math>\hat {\bold v} = A\hat {\bold p}</math>
## <math>\alpha_i = \rho_{i-1} / \tilde {\bold r}^T \hat {\bold v}</math>
## <math>
## Solve <math>M\hat {\bold u} =
## <math>{\bold x}_i = {\bold x}_{i-1} + \alpha_i \hat {\bold u}</math>
## <math>\hat {\bold q} = A\hat {\bold u}</math>
## <math>
## Check for convergence: if there is convergence, end the loop and return the result
|