Content deleted Content added
Will Orrick (talk | contribs) It was a mistake to use sfn, as it's not used elsewhere in the article. Change style of sfn footnote to match other footnotes. |
Will Orrick (talk | contribs) Compress and consolidate the material on computing lambda to try to make it more accessible. Then expand on what Carmichael proved about these expressions, mentioning his notion of primitive lambda-roots. Remove some now-redundant sections. |
||
Line 62:
# Carmichael's function at 8 is 2, {{math | ''λ''(8) {{=}} 2}}, because for any number {{mvar | a}} coprime to 8, i.e. <math>a\in \{1, 3, 5, 7\}~,</math> it holds that {{math | ''a''<sup>2</sup> ≡ 1 (mod 8)}}. Namely, {{math | 1<sup>1⋅2</sup> {{=}} 1<sup>2</sup> ≡ 1 (mod 8)}}, {{math | 3<sup>2</sup> {{=}} 9 ≡ 1 (mod 8)}}, {{math | 5<sup>2</sup> {{=}} 25 ≡ 1 (mod 8)}} and {{math | 7<sup>2</sup> {{=}} 49 ≡ 1 (mod 8)}}.<br />Euler's [[totient function]] at 8 is 4, {{math | ''φ''(8) {{=}} 4}}, because there are exactly 4 numbers less than and coprime to 8 (1, 3, 5, and 7). Moreover, [[Euler's theorem]] assures that {{math | ''a''<sup>4</sup> ≡ 1 (mod 8)}} for all {{mvar | a}} coprime to 8, but 4 is not the smallest such exponent.
==
The Carmichael lambda function of a prime power can be expressed in terms of the Euler totient. Any number that is not 1 or a prime power can be written uniquely as the product of distinct prime powers, in which case {{mvar | λ}} of the product is the least common multiple of the {{mvar | λ}} of the prime power factors. Specifically, {{math | ''λ''(''n'')}} is given by
\varphi(n) & \text{if }n\text{ is 1, 2, 4, or an odd prime power}\\
\tfrac12\varphi(n) & \text{if }n=2^r,\ r\ge3\\
\operatorname{lcm}\Bigl(\lambda(n_1),\lambda(n_2),\ldots,\lambda(n_k)\Bigr) & \text{if }n=n_1n_2\ldots n_k\text{ where }n_1,n_2,\ldots,n_k\text{ are powers of distinct primes.}
\end{cases}</math>▼
Euler's
:<math>\varphi(p^r) {{=}} p^{r-1}(p-1).</math>▼
== Carmichael's theorems ==
Carmichael proved two theorems that, together, establish that if {{math | ''λ''(''n'')}} is considered as defined by the expressions in the previous section, then it satisfies the property stated in the introduction, namely that it is the smallest positive integer {{mvar | m}} such that <math>a^m\equiv 1\pmod{n}</math> for all {{mvar | a}} relatively prime to {{mvar | n}}.
{{Math theorem |name=Theorem 1|math_statement=If {{mvar | a}} is relatively prime to {{mvar | n}} then <math>a^{\lambda(n)}\equiv 1\pmod{n}</math>.<ref>Carmichaael (1914) p.40</ref>}}
This implies that the order of every element of the multiplicative group of integers modulo {{mvar | n}} divides {{math | ''λ''(''n'')}}. Carmichael calls an element {{mvar | a}} for which <math>a^{\lambda(n)}</math> is the least power of {{mvar | a}} congruent to 1 (mod {{mvar | n}}) a ''primitive λ-root modulo n''.<ref>Carmichael (1914) p.54</ref> (This is not to be confused with a [[primitive root modulo n|primitive root modulo {{mvar | n}}]], which Carmichael sometimes refers to as a primitive <math>\varphi</math>-root modulo {{mvar | n}}.)
{{Math theorem |name=Theorem 2|math_statement=For every positive integer {{mvar | n}} there exists a primitive {{mvar | λ}}-root modulo {{mvar | n}}. Moreover, if {{mvar | g}} is such a root, then there are <math>\varphi(\lambda(n))</math> primitive {{mvar | λ}}-roots that are congruent to powers of {{mvar | g}}.<ref>Carmichael (1914) p.55</ref>}}
If {{mvar | g}} is one of the primitive {{mvar | λ}}-roots guaranteed by the theorem, the <math>g^m\equiv1\pmod{n}</math> has no positive integer solutions {{mvar | m}} less than {{math | ''λ''(''n'')}}, showing that there is no positive {{math | ''m'' < ''λ''(''n'')}} such that <math>a^m\equiv 1\pmod{n}</math> for all {{mvar | a}} relatively prime to {{mvar | n}}.
The second statement of Theorem 2 does not imply that all primitive {{mvar | λ}}-roots modulo {{mvar | n}} are congruent to powers of a single root {{mvar | g}}.<ref>Carmichael (1914) p.56</ref> For example, if {{math | ''n'' {{=}} 15}}, then {{math | ''λ''(''n'') {{=}} 4}} while <math>\varphi(n)=8</math> and <math>\varphi(\lambda(n))=2</math>. There are four primitive {{mvar | λ}}-roots modulo 15, namely 2, 7, 8, and 13 as <math>1\equiv2^4\equiv8^4\equiv7^4\equiv13^4</math>. The roots 2 and 8 are congruent to powers of each other and the roots 7 and 13 are congruent t to powers of each other, but neither 7 nor 13 is congruent to a power of 2 or 8. The other four elements of the multiplicative group modulo 15, namely 1, 4 (which satisfies <math>4\equiv2^2\equiv8^2\equiv7^2\equiv13^2</math>), 11, and 14, are not primitive {{mvar | λ}}-roots modulo 15.
For a contrasting example, if {{math | ''n'' {{=}} 9}}, then <math>\lambda(n)=\varphi(n)=6</math> and <math>\varphi(\lambda(n))=2</math>. There are two primitive {{mvar | λ}}-roots modulo 9, namely 2 and 5, each of which is congruent to the fifth power of the other. They are also both primitive <math>\varphi</math>-roots modulo 9.
▲:<math>\lambda(p^r) = \begin{cases}
▲\end{cases}</math>
▲Euler's function for prime powers {{math | ''p''<sup>''r''</sup>}} is given by
▲:<math>\varphi(p^r) = p^{r-1}(p-1).</math>
==Properties of the Carmichael function==
In this section, an [[integer]] <math>n</math> is divisible by a nonzero integer <math>m</math> if there exists an integer <math>k</math> such that <math>n = km</math>. This is written as
:<math>m \mid n.</math>
===Minimality===
|