Content deleted Content added
Line 28:
Topological sweeping is a form of plane sweep with a simple ordering of processing points, which avoids the necessity of completely sorting the points; it allows some sweep line algorithms to be performed more efficiently.
The [[rotating calipers]] technique for designing geometric algorithms may also be interpreted as a form of the plane sweep, in the [[projective dual]] of the input plane: a form of projective duality transforms the slope of a line in one plane into the ''x''-coordinate of a point in the dual plane, so the progression through lines in sorted order by their slope as performed by a rotating calipers algorithm is dual to the progression through points sorted by their ''x''-coordinates in a plane sweep algorithm.{{cn}}
The sweeping approach may be generalised to higher dimensions.<ref>{{cite arXiv |last=Sinclair |first=David |eprint=1602.04707 |title=A 3D Sweep Hull Algorithm for computing Convex Hulls and Delaunay Triangulation |class=cs.CG |date=2016-02-11}}</ref>
|