Content deleted Content added
m kku bot link shear stress |
Some ce, and removal of a few science errors. |
||
Line 4:
{{Use British English|date=March 2023}}
[[File:EBSD Si.png|thumb|An electron backscatter diffraction pattern of [[monocrystalline silicon]], taken at 20 kV with a [[Field electron emission|field-emission]] electron source|alt=An electron backscatter diffraction pattern of monocrystalline silicon, taken at 20 kV with a field-emission electron source. The Kikuchi bands intersect at the centre of the image ]]
'''Electron backscatter diffraction''' ('''EBSD''') is a [[scanning electron microscopy]] (SEM) technique used to study the [[Crystallography|crystallographic]] structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a [[Phosphorescence|phosphorescent]] screen, a compact lens and a low-light [[Charge-coupled device|camera]]. In
The change and
==Pattern formation and collection==
Line 12:
{{Further information|Electron diffraction|Kikuchi lines (physics)}}
[[File:EBSD setup graphic.png|thumb|279x279px|EBSD typical hardware configuration inside a [[field emission gun scanning electron microscope]].<ref>{{Cite journal |last1=Vespucci |first1=S. |last2=Winkelmann |first2=A. |last3=Naresh-Kumar |first3=G. |last4=Mingard |first4=K. P. |last5=Maneuski |first5=D. |last6=Edwards |first6=P. R. |last7=Day |first7=A. P. |last8=O'Shea |first8=V. |last9=Trager-Cowan |first9=C. |date=2015 |title=Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns |journal=Physical Review B |volume=92 |issue=20 |pages=205301 |doi=10.1103/PhysRevB.92.205301|bibcode=2015PhRvB..92t5301V |doi-access=free }}</ref>|alt=Pictorial diagram showing the major components of a field emission gun scanning electron microscope. The electron gun is at the top. Below the gun is a disk of diffraction cones in which the specimen is embedded at an oblique angle. To the left of the sample is a CCD camera assembly, including lenses and a phosphor screen. The electron beam emerges from the gun, impinging on the side of the sample facing the camera.]]
For electron backscattering diffraction microscopy, a flat polished crystalline specimen is usually placed inside the microscope chamber. The sample is tilted at ~70° from [[Scanning electron microscope]] (SEM) flat specimen positioning and 110° to the electron backscatter diffraction (EBSD) detector.<ref name=":18">{{Cite journal |last=Randle |first=Valerie |date=September 2009 |title=Electron backscatter diffraction: Strategies for reliable data acquisition and processing |journal=Materials Characterization |volume=60 |issue=9 |pages=913–922 |doi=10.1016/j.matchar.2009.05.011}}</ref> Tilting the sample elongates the interaction volume perpendicular to the tilt axis, allowing more electrons to leave the sample
The EBSD detector is located within the specimen chamber of the SEM at an angle of approximately 90° to the pole piece. The EBSD detector is typically
In this configuration, as
The systematically arranged Kikuchi bands, which have a range of intensity along their width, intersect around the centre of the regions of interest (ROI), describing the probed volume crystallography.<ref>{{Cite journal |date=1954|title=High-angle Kikuchi patterns |journal=Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences |volume=221 |issue=1145 |pages=224–242 |doi=10.1098/rspa.1954.0017 |bibcode=1954RSPSA.221..224A |last1=Alam |first1=M. N. |last2=Blackman |first2=M. |last3=Pashley |first3=D. W. |s2cid=97131764 }}</ref> These bands and their intersections form what is known as Kikuchi patterns or electron backscatter patterns (EBSPs). To improve contrast, the patterns’ background is corrected by removing anisotropic/inelastic scattering using static background correction or dynamic background correction.<ref>{{Cite journal |last1=Dingley |first1=D J |last2=Wright |first2=S I |last3=Nowell |first3=M M |date=August 2005 |title=Dynamic Background Correction of Electron Backscatter Diffraction Patterns |journal=Microscopy and Microanalysis |volume=11 |issue=S02 |doi=10.1017/S1431927605506676 |s2cid=137658758 |doi-access=free }}</ref>
Line 32:
Inside the SEM, the size of the measurement area determines local resolution and measurement time.<ref>{{Cite book |last=Williams |first=B. David |title=Transmission electron microscopy: a textbook for materials science. |date=2009 |publisher=Plenum Press |isbn=978-0-387-76501-3 |pages=11 |oclc=633626308}}</ref> Usual settings for high-quality EBSPs are 15 nA current, 20 kV beam energy, 18 mm working distance, long exposure time, and minimal CCD pixel binning.<ref>{{Cite journal |last1=Britton |first1=T.B. |last2=Jiang |first2=J. |last3=Clough |first3=R. |last4=Tarleton |first4=E. |last5=Kirkland |first5=A.I. |last6=Wilkinson |first6=A.J. |date=2013 |title=Assessing the precision of strain measurements using electron backscatter diffraction – Part 2: Experimental demonstration |journal=Ultramicroscopy |volume=135 |pages=136–141 |doi=10.1016/j.ultramic.2013.08.006 |pmid=24034981 }}</ref><ref>{{Cite journal |last1=Jiang |first1=J. |last2=Britton |first2=T.B. |last3=Wilkinson |first3=A.J. |date=2013 |title=Evolution of dislocation density distributions in copper during tensile deformation |journal=Acta Materialia |volume=61 |issue=19 |pages=7227–7239 |doi=10.1016/j.actamat.2013.08.027 |bibcode=2013AcMat..61.7227J|doi-access=free }}</ref><ref>{{Cite journal |last1=Abdolvand |first1=Hamidreza |last2=Wilkinson |first2=Angus J. |date=2016|title=On the effects of reorientation and shear transfer during twin formation: Comparison between high-resolution electron backscatter diffraction experiments and a crystal plasticity finite element model |journal=International Journal of Plasticity |volume=84 |pages=160–182 |doi=10.1016/j.ijplas.2016.05.006 |s2cid=139049848|doi-access=free }}</ref><ref name=":29">{{Cite journal |last1=Koko |first1=Abdalrhaman |last2=Becker |first2=Thorsten H. |last3=Elmukashfi |first3=Elsiddig |last4=Pugno |first4=Nicola M. |last5=Wilkinson |first5=Angus J. |last6=Marrow |first6=T. James |date=2023 |title=HR-EBSD analysis of in situ stable crack growth at the micron scale |journal=Journal of the Mechanics and Physics of Solids |volume=172 |pages=105173 |arxiv=2206.10243 |bibcode=2023JMPSo.17205173K |doi=10.1016/j.jmps.2022.105173 |s2cid=249889649 }}</ref> The EBSD phosphor screen is set at an 18 mm working distance and a map's step size of less than 0.5 µm for [[Infinitesimal strain theory|strain]] and [[Geometrically necessary dislocations|dislocations density]] analysis.<ref name=":30" /><ref name=":31" />
Decomposition of gaseous hydrocarbons and also hydrocarbons on the surface of samples by the electron beam inside the microscope results in carbon deposition,<ref>{{Cite journal |last1=Griffiths |first1=A J V |last2=Walther |first2=T |date=2010 |title=Quantification of carbon contamination under electron beam irradiation in a scanning transmission electron microscope and its suppression by plasma cleaning |journal=Journal of Physics: Conference Series |volume=241 |issue=1 |pages=012017 |bibcode=2010JPhCS.241a2017G |doi=10.1088/1742-6596/241/1/012017 |s2cid=250689401|doi-access=free }}</ref> which degrades the quality of EBSPs inside the probed area compared to the EBSPs outside the acquisition window. The gradient of pattern degradation increases moving inside the probed zone with an apparent accumulation of deposited carbon. The black spots from the beam instant-induced carbon deposition also highlight the immediate deposition even if agglomeration did not happen.<ref name=":4">{{Cite journal |last1=Koko |first1=Abdalrhaman |last2=Elmukashfi |first2=Elsiddig |last3=Dragnevski |first3=Kalin |last4=Wilkinson |first4=Angus J. |last5=Marrow |first5=Thomas James |date=2021 |title=J-integral analysis of the elastic strain fields of ferrite deformation twins using electron backscatter diffraction |journal=Acta Materialia |volume=218 |pages=117203 |bibcode=2021AcMat.21817203K |doi=10.1016/j.actamat.2021.117203 |url=https://ora.ox.ac.uk/objects/uuid:4071edea-3bfc-4d2b-8d32-c3b05bd73372 |access-date=20 March 2023 |archive-date=5 July 2022 |archive-url=https://web.archive.org/web/20220705095819/https://ora.ox.ac.uk/objects/uuid:4071edea-3bfc-4d2b-8d32-c3b05bd73372 |url-status=live }}</ref><ref name=":12">{{Cite journal |last1=Bachmann |first1=F. |last2=Hielscher |first2=Ralf |last3=Schaeben |first3=Helmut |date=2010 |title=Texture Analysis with MTEX – Free and Open Source Software Toolbox |journal=Solid State Phenomena |volume=160 |pages=63–68 |doi=10.4028/www.scientific.net/SSP.160.63 |s2cid=136017346}}</ref>
=== Depth resolution ===
Line 41:
A recent comparison between reports on EBSD depth resolution, Koko et al<ref name=":32" /> indicated that most publications do not present a rationale for the definition of depth resolution, while not including information on the beam size, tilt angle, beam-to-sample and sample-to-detector distances.<ref name=":32" /> These are critical parameters for determining or simulating the depth resolution.<ref name=":28" /> The beam current is generally not considered to affect the depth resolution in experiments or simulations. However, it affects the beam spot size and [[signal-to-noise ratio]], and hence, indirectly, the details of the pattern and its depth information.<ref>{{Cite journal |last=Humphreys |first=F. J |date=2004 |title=Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD) |journal=Scripta Materialia |series=Viewpoint set no. 35. Metals and alloys with a structural scale from the micrometer to the atomic dimensions |volume=51 |issue=8 |pages=771–776 |doi=10.1016/j.scriptamat.2004.05.016}}</ref><ref>{{Citation |last1=Goldstein |first1=Joseph I. |title=The Visibility of Features in SEM Images |date=2018 |work=Scanning Electron Microscopy and X-Ray Microanalysis |pages=123–131 |editor-last=Goldstein |editor-first=Joseph I. |place=New York, New York |publisher=Springer |doi=10.1007/978-1-4939-6676-9_8 |isbn=978-1-4939-6676-9 |last2=Newbury |first2=Dale E. |last3=Michael |first3=Joseph R. |last4=Ritchie |first4=Nicholas W. M. |last5=Scott |first5=John Henry J. |last6=Joy |first6=David C. |editor2-last=Newbury |editor2-first=Dale E. |editor3-last=Michael |editor3-first=Joseph R. |editor4-last=Ritchie |editor4-first=Nicholas W.M. |doi-access=free }}</ref><ref name=":24" />
[[Monte Carlo method|Monte Carlo]] simulations provide an alternative approach to quantifying the depth resolution for EBSPs formation, which can be estimated using the [[Bloch's theorem|Bloch wave theory]], where backscattered primary electrons – after interacting with the crystal lattice – exit the surface, carrying information about the crystallinity of the volume interacting with the electrons.<ref>{{Cite journal |last1=Ren |first1=S. X. |last2=Kenik |first2=E. A. |last3=Alexander |first3=K. B. |date=1997 |title=Monte Carlo Simulation of Spatial Resolution for Electron Backscattered Diffraction (EBSD) with Application to Two-Phase Materials |journal=Microscopy and Microanalysis |volume=3 |issue=S2 |pages=575–576 |doi=10.1017/S1431927600009764 |bibcode=1997MiMic...3S.575R |s2cid=137029133 |url=https://digital.library.unt.edu/ark:/67531/metadc694234/ |access-date=20 March 2023 |archive-date=25 March 2023 |archive-url=https://web.archive.org/web/20230325200544/https://digital.library.unt.edu/ark:/67531/metadc694234/ |url-status=live }}</ref> The backscattered electrons (BSE) energy distribution depends on the material's characteristics and the beam conditions.<ref>{{Cite journal |last1=Brodusch |first1=Nicolas |last2=Demers |first2=Hendrix |last3=Gauvin |first3=Raynald |date=2018 |title=Imaging with a Commercial Electron Backscatter Diffraction (EBSD) Camera in a Scanning Electron Microscope: A Review |journal=Journal of Imaging |volume=4 |issue=7 |pages=88 |doi=10.3390/jimaging4070088|doi-access=free}}</ref> This BSE wave field is also affected by the thermal diffuse scattering process that causes incoherent and inelastic (energy loss) scattering – after the
Both the EBSD experiment and simulations typically make two assumptions: that the surface is pristine and has a homogeneous depth resolution; however, neither of them is valid for a deformed sample.<ref name=":27" />
Line 146:
These measurements do not provide information about the hydrostatic or [[volumetric strain]]s,<ref name=":5" /><ref name=":6" /> because there is no change in the orientations of lattice planes (crystallographic directions), but only changes in the position and width of the Kikuchi bands.<ref name="EBSD Image Quality Mapping">{{Cite journal |journal=Microscopy and Microanalysis |doi=10.1017/s1431927606060090 |title=EBSD Image Quality Mapping |year=2006 |last1=Wright |first1=Stuart I. |last2=Nowell |first2=Matthew M. |volume=12 |issue=1 |pages=72–84 |pmid=17481343 |bibcode=2006MiMic..12...72W |s2cid=35055001 |doi-access=free }}</ref><ref>{{Cite journal |last1=Jiang |first1=Jun |last2=Zhang |first2=Tiantian |last3=Dunne |first3=Fionn P. E. |last4=Britton |first4=T. Ben |date= 2016 |title=Deformation compatibility in a single crystalline Ni superalloy |journal=Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences |volume=472 |issue=2185 |pages=20150690 |doi=10.1098/rspa.2015.0690 |pmc=4786046 |pmid=26997901|bibcode=2016RSPSA.47250690J }}</ref>
=== The reference pattern problem ===
The local lattice distortion at the EBSP<sub>0</sub> influences the resultant HR-EBSD map, e.g., a reference pattern deformed in tension will directly reduce the HR-EBSD map tensile strain magnitude while indirectly influencing the other component magnitude and the strain's spatial distribution. Furthermore, the choice of EBSP<sub>0</sub> slightly affects the GND density distribution and magnitude, and choosing a reference pattern with a higher GND density reduces the cross-correlation quality, changes the spatial distribution and induces more errors than choosing a reference pattern with high lattice distortion. Additionally, there is no apparent connection between EBSP<sub>0</sub>’s IQ and EBSP<sub>0</sub>'s local lattice distortion.<ref name=":10" />
|