Content deleted Content added
m →Solution: Added classical variance formulas |
→Solution: fixing the formula |
||
Line 39:
Finally, the least-squares estimates of model's parameters will be{{sfn|Glaister|2001}}
: <math>\begin{align}
& \hat\beta_1 = \frac{s_{yy}-\delta s_{xx} + \sqrt{(s_{yy}-\delta s_{xx})^2 + 4\delta s_{xy}^2}}{2s_{
& \hat\beta_0 = \overline{y} - \hat\beta_1\overline{x}, \\
& \hat{x}_i^* = x_i + \frac{\hat\beta_1}{\hat\beta_1^2+\delta}(y_i-\hat\beta_0-\hat\beta_1x_i).
|