Interior-point method: Difference between revisions

Content deleted Content added
Line 70:
+
O(1) \cdot \sqrt{M} \cdot \ln\left(\frac{M \text{Var}_G(c)}{\epsilon} + 1\right)
</math></blockquote>where the constant factor O(1) depends only on ''r'' and ''L'', and <math>O\text{Var}_G(1c) \cdot:= \sqrtmax_{Mx\in G} \cdotc^T x \ln\left(\frac{M}{1- \pi_min_{x^*_f}(\bar{x})in G} +c^T 1\right)x
</math>.
+
 
\text{Var}_G(c) := \max_{x\in G} c^T x - \min_{x\in G} c^T x
Overall, the overall Newton complexity of finding an ''ε''-approximate solution is at most
 
<math>O(1) \cdot \sqrt{M} \cdot \ln\left(\frac{V}{\varepsilon} + 1\right) </math>, where V is some problem-dependent constant: <math>V = \frac{\text{Var}_G(c)}{1-\pi_{x^*_f(\bar{x})}}
</math>.
{{Under construction|placedby=Erel Segal}}