Content deleted Content added
|
|
== Tamo-Barg Codes ==
Let f ∈ Fq [X]F_{q}</math> be a polynomial and let �''l'' be a positive integer.
Then f is said to be (r, �''l'')-good if
• f has degree r + 1,
• there exist A A_{1}</math> , . . . A�A_{''l''}</math> distinct subsets of Fq such that
– for any i ∈ {1, . . . �,''l''}, f (A A_{i }</math>) = {t t_{i }</math>} for some tit_{i}</math> ∈ F F_{q}</math> , i.e. f is constant on Ai ,
– # A A_{i }</math> = r + 1, ▼
on Ai ,
– AiA_{i}</math> ∩ A A_{j }</math> = ∅ for any i ≠ j. ▼
We say that { A1 A_{1}</math>, . . . , A � A_{''l''}</math>} is a splitting covering for f ▼
▲– Ai ∩ A j = ∅ for any i ≠ j.
▲We say that {A1 , . . . , A � } is a splitting covering for f
|