Content deleted Content added
|
|
== Tamo-Barg Codes ==
Let f ∈ F_{q}</math> be a polynomial and let ''l'' be a positive integer.
Then f is said to be (r, ''l'')-good if
• f has degree r + 1,
• there exist A_{1}</math> , . . . A_{''l''}</math> distinct subsets of Fq such that
– for any i ∈ {1, . . . ,''l''}, f (A_{i}</math>) = {t_{i}</math>} for some t_{i}</math> ∈ F_{q}</math> , i.e. f is constant on Ai ,
– #A_{i}</math> = r + 1,
– A_{i}</math> ∩ A_{j}</math> = ∅ for any i ≠ j.
We say that {A_{1}</math>, . . . , A_{''l''}</math>} is a splitting covering for f
|