Regular conditional probability: Difference between revisions

Content deleted Content added
No edit summary
Line 21:
 
A more general definition can be given in terms of [[conditional expectation]]. Consider a function <math> e_{Y \in A} : \mathbb{R} \to [0,1]</math> satisfying
:<math>e_{Y \in A}(X(\omega)) = \mathbb{operatorname E}[1_{Y \in A} \mid X](\omega)</math>
for almost all <math>\omega</math>.
Then the conditional probability distribution is given by
Line 27:
 
As with conditional expectation, this can be further generalized to conditioning on a sigma algebra <math>\mathcal{F}</math>. In that case the conditional distribution is a function <math>\Omega \times \mathcal{B}(\mathbb{R}) \to [0, 1]</math>:
:<math> \kappa_{Y\mid\mathcal{F}}(\omega, A) = \mathbb{operatorname E}[1_{Y \in A} \mid \mathcal{F}]</math>
 
=== Regularity ===
Line 42:
:<math>
\begin{aligned}
\mathbb{operatorname E}[Y\mid X=x] &= \sum_y y \, P(Y=y\mid X=x) \\
\mathbb{operatorname E}[Y\mid X=x] &= \int y \, f_{Y\mid X}(x, y) \, \mathrm{d}y
\end{aligned}
</math>
Line 49:
 
This result can be extended to measure theoretical conditional expectation using the regular conditional probability distribution:
:<math>\mathbb{operatorname E}[Y\mid X](\omega) = \int y \, \kappa_{Y\mid\sigma(X)}(\omega, \mathrm{d}y).</math>
 
== Formal definition==