Content deleted Content added
Line 99:
==Kiefer–Wolfowitz algorithm==
The Kiefer–Wolfowitz algorithm was introduced in 1952 by [[Jacob Wolfowitz]] and [[Jack_Kiefer_(statistician)|Jack Kiefer]],<ref name = "KW">{{Cite journal | last1 = Kiefer | first1 = J. | last2 = Wolfowitz | first2 = J. | doi = 10.1214/aoms/1177729392 | title = Stochastic Estimation of the Maximum of a Regression Function | journal = The Annals of Mathematical Statistics | volume = 23 | issue = 3 | pages = 462 | year = 1952 | doi-access = free }}</ref> and was motivated by the publication of the Robbins–Monro algorithm. However, the algorithm was presented as a method which would stochastically estimate the maximum of a function.
Let <math>M(x) </math> be a function which has a maximum at the point <math>\theta </math>. It is assumed that <math>M(x)</math> is unknown; however, certain observations <math>N(x)</math>, where <math>\operatorname E[N(x)] = M(x)</math>, can be made at any point <math>x</math>. The structure of the algorithm follows a gradient-like method, with the iterates being generated as ::<math> x_{n+1} = x_n + a_n
where <math>N(x_n+c_n)</math> and <math>N(x_n-c_n)</math> are independent
Kiefer and Wolfowitz proved that, if <math>M(x)</math> satisfied certain regularity conditions, then <math>x_n</math> will converge to <math>\theta</math> in probability as <math>n\to\infty </math>, and later Blum<ref name=":0" /> in 1954 showed <math>x_n</math> converges to <math>\theta</math> almost surely, provided that:
* <math>\operatorname{Var}(N(x))\le S<\infty</math> for all <math>x</math>.
|