Content deleted Content added
m Added "Differential analyser" to the "See also" section, as reference to World War II-era systems. |
m Open access bot: doi updated in citation with #oabot. |
||
Line 86:
=== Foundations and early applications ===
In 1960, [[John McCarthy (computer scientist)|John McCarthy]] explored an extension of [[Primitive recursive function|primitive recursive functions]] for computing symbolic expressions through the [[Lisp (programming language)|Lisp]] programming language while at the [[Massachusetts Institute of Technology]].<ref>{{Cite journal |last=McCarthy |first=John |date=1960-04-01 |title=Recursive functions of symbolic expressions and their computation by machine, Part I |url=https://dl.acm.org/doi/10.1145/367177.367199 |journal=Communications of the ACM |volume=3 |issue=4 |pages=184–195 |doi=10.1145/367177.367199 |issn=0001-0782|doi-access=free }}</ref> Though his series on "Recursive functions of symbolic expressions and their computation by machine" remained incomplete,<ref>{{Cite book |last=Wexelblat |first=Richard L. |title=History of programming languages |date=1981 |publisher=Academic press |others=History of programming languages conference, Association for computing machinery |isbn=978-0-12-745040-7 |series=ACM monograph series |___location=New York London Toronto}}</ref> McCarthy and his contributions to artificial intelligence programming and computer algebra via Lisp helped establish [[MIT Computer Science and Artificial Intelligence Laboratory|Project MAC]] at the Massachusetts Institute of Technology and the organization that later became the [[Stanford University centers and institutes|Stanford AI Laboratory]] (SAIL) at [[Stanford University]], whose competition facilitated significant development in computer algebra throughout the late 20th century.
Early efforts at symbolic computation, in the 1960s and 1970s, faced challenges surrounding the inefficiency of long-known algorithms when ported to computer algebra systems.<ref>{{Cite journal |date=1985-03-01 |title=Symbolic Computation (An Editorial) |url=https://www.sciencedirect.com/science/article/pii/S0747717185800250 |journal=Journal of Symbolic Computation |volume=1 |issue=1 |pages=1–6 |doi=10.1016/S0747-7171(85)80025-0 |issn=0747-7171}}</ref> Predecessors to Project MAC, such as [[ALTRAN]], sought to overcame algorithmic limitations through advancements in hardware and interpreters, while later efforts turned towards software optimization.<ref>{{Cite journal |last=Feldman |first=Stuart I. |date=1975-11-01 |title=A brief description of Altran |url=https://dl.acm.org/doi/10.1145/1088322.1088325 |journal=ACM SIGSAM Bulletin |volume=9 |issue=4 |pages=12–20 |doi=10.1145/1088322.1088325 |issn=0163-5824}}</ref>
|