Content deleted Content added
→Primal-dual methods: Insert display="block" into block equations |
→Types of Convex Programs Solvable via Interior-Point Methods: Nicely format the optimization problems. |
||
Line 163:
=== [[Linear program]]s ===
Consider a linear program of the form:
<math display="block">\begin{aligned}
\operatorname{minimize}\quad & c^\top x \\
\text{subject to}\quad
& Ax \leq b.
\end{aligned}.</math>
We can apply path-following methods with the barrier
<math display="block">b(x) := -\sum_{j=1}^m \ln(b_j - a_j^T x).</math>
The function <math>b</math> is self-concordant with parameter ''M''=''m'' (the number of constraints). Therefore, the number of required Newton steps for the path-following method is O(''mn''<sup>2</sup>), and the total runtime complexity is O(''m''<sup>3/2</sup> ''n''<sup>2</sup>).{{Clarify|reason=This is the cost for an approximate solution - not an exact solution. The text does not elaborate on this.|date=November 2023}}
===[[Quadratically constrained quadratic program]]s===
Given a quadratically constrained quadratic program of the form:
Given a program of the form: '''minimize d<sup>T</sup>x s.t. ''f<sub>j</sub>''(''x'') := ''x''<sup>T</sup> ''A<sub>j</sub> x'' + ''b<sub>j</sub>''<sup>T</sup>''x'' + ''c<sub>j</sub>'' ≤ 0 for all j in 1,...,''m''''', where all matrices ''A<sub>j</sub>'' are [[Positive semidefinite matrices|positive-semidefinite program]], we can apply path-following methods with the barrier <math>b(x) := -\sum_{j=1}^m \ln(-f_j(x))</math>. It is a self-concordant barrier with parameter ''M''=''m''. The Newton complexity is O(''(m+n)n''<sup>2</sup>), and the total runtime complexity is O(''m''<sup>1/2</sup> (m+n) ''n''<sup>2</sup>).▼
<math display="block">\begin{aligned}
\operatorname{minimize}\quad & d^\top x \\
\text{subject to}\quad
& f_j(x) := x^\top A_j x + b_j^\top x + c_j \leq 0 \quad \text{ for all } j = 1, \dots, m,
\end{aligned}</math>
where all matrices ''A<sub>j</sub>'' are [[Positive semidefinite matrices|positive-semidefinite program]].
We can apply path-following methods with the barrier
===L<sub>p</sub> norm approximation===
Consider a problem of the form
▲Consider a problem of the form '''minimize sum<sub>''j''</sub> |''v<sub>j</sub>''-''u<sub>j</sub>''<sup>T</sup>''x''|<sup>''p''</sup>''', where 1<''p''<∞, ''u<sub>j</sub>'' are vectors and ''v<sub>j</sub>'' are scalars. After converting to the standard form, we can apply path-following methods with a self-concordant barrier with parameter ''M''=4''m''. The Newton complexity is O(''(m+n)n''<sup>2</sup>), and the total runtime complexity is O(''m''<sup>1/2</sup> (m+n) ''n''<sup>2</sup>).
<math display="block">\begin{aligned}
\operatorname{minimize}\quad & \sum_j |v_j - u_j^\top x|_p
\end{aligned},</math>
▲
===[[Geometric program]]s===
Consider the problem
Consider a problem with objective function '''''f''<sub>0</sub>(x)=sum''<sub>i</sub> c<sub>i0</sub>'' exp(''a<sub>i</sub>''<sup>T</sup>''x'')''', and constraints '''''f<sub>j</sub>''(''x'')=sum''<sub>i</sub> c<sub>ij</sub>'' exp(''a<sub>i</sub>''<sup>T</sup>''x'') ≤ ''d<sub>j</sub>'' for ''j'' in 1,...,''m''''' '''and ''i'' in 1,...,''k'''''. There is a self-concordant barrier with parameter 2''k''+''m''. The path-following method has Newton complexity O(''mk''<sup>2</sup>+''k''<sup>3</sup>+''n''<sup>3</sup>) and total complexity O((''k+m'')<sup>1/2</sup>[''mk''<sup>2</sup>+''k''<sup>3</sup>+''n''<sup>3</sup>]). ▼
<math display="block">\begin{aligned}
\operatorname{minimize}\quad & f_0(x) := \sum_{i=1}^k c_{i0} \exp(a_i^\top x) \\
\text{subject to}\quad
& f_j(x) := \sum_{i=1}^k c_{ij} \exp(a_i^\top x) \leq d_j \quad \text{ for all } j = 1, \dots, m.
\end{aligned}</math>
▲
=== [[Semidefinite program]]s ===
Interior point methods can be used to solve semidefinite programs.<ref name=":0" />{{Rp|___location=Sec.11}}
|