Content deleted Content added
m Open access bot: doi added to citation with #oabot. |
Citation bot (talk | contribs) Alter: template type, journal. Add: s2cid, chapter-url, chapter, authors 1-1. Removed or converted URL. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Abductive | Category:Root-finding algorithms | #UCB_Category 35/37 |
||
Line 69:
== Finding roots in higher dimensions ==
The [[bisection method]] has been generalized to higher dimensions; these methods are called '''generalized bisection methods'''.<ref name=":0">{{Cite journal |last1=Mourrain |first1=B. |last2=Vrahatis |first2=M. N. |last3=Yakoubsohn |first3=J. C. |date=2002-06-01 |title=On the Complexity of Isolating Real Roots and Computing with Certainty the Topological Degree
The [[Poincaré–Miranda theorem]] gives a criterion for the existence of a root in a rectangle, but it is hard to verify, since it requires to evaluate the function on the entire boundary of the triangle.
Line 75:
Another criterion is given by a theorem of Kronecker.<ref>{{Cite web |title=Iterative solution of nonlinear equations in several variables |url=https://dl.acm.org/doi/abs/10.5555/335947 |access-date=2023-04-16 |website=Guide books |language=EN }}</ref> It says that, if the [[Degree of a continuous mapping|topological degree]] of a function ''f'' on a rectangle is non-zero, then the rectangle must contain at least one root of ''f''. This criterion is the basis for several root-finding methods, such as by Stenger<ref>{{Cite journal |last=Stenger |first=Frank |date=1975-03-01 |title=Computing the topological degree of a mapping inRn |url=https://doi.org/10.1007/BF01419526 |journal=Numerische Mathematik |language=en |volume=25 |issue=1 |pages=23–38 |doi=10.1007/BF01419526 |s2cid=122196773 |issn=0945-3245}}</ref> and Kearfott.<ref>{{Cite journal |last=Kearfott |first=Baker |date=1979-06-01 |title=An efficient degree-computation method for a generalized method of bisection |url=https://doi.org/10.1007/BF01404868 |journal=Numerische Mathematik |volume=32 |issue=2 |pages=109–127 |doi=10.1007/BF01404868 |s2cid=122058552 |issn=0029-599X}}</ref> However, computing the topological degree can be time-consuming.
A third criterion is based on a ''characteristic polyhedron''. This criterion is used by a method called Characteristic Bisection.<ref name=":0" />{{Rp|page=19--}} It does not require to compute the topological degree - it only requires to compute the signs of function values. The number of required evaluations is at least <math>\log_2(D/\epsilon)</math>, where ''D'' is the length of the longest edge of the characteristic polyhedron.<ref name=":2">{{Cite journal |
A fourth method uses an intermediate-value theorem on simplices.<ref>{{Cite journal |last=Vrahatis |first=Michael N. |date=2020-04-15 |title=Intermediate value theorem for simplices for simplicial approximation of fixed points and zeros |url=https://www.sciencedirect.com/science/article/pii/S0166864119304420 |journal=Topology and
== See also ==
|