Distributional data analysis: Difference between revisions

Content deleted Content added
Lazydry (talk | contribs)
Submitting using AfC-submit-wizard
Citation bot (talk | contribs)
Alter: pages. Add: pmc, arxiv, bibcode, pmid, doi, url, s2cid. Formatted dashes. | Use this bot. Report bugs. | Suggested by Eastmain | Category:AfC pending submissions by age/1 day ago | #UCB_Category 19/85
Line 18:
=Mean and variance=
 
For a probability measure <math>\nu \in \mathcal{F}</math>, consider a [[stochastic process|random process]] <math>\mathfrak{F}</math> such that <math>\nu \sim \mathfrak{F}</math>. One way to define mean and variance of <math>\nu</math> is to introduce the [[Fréchet mean]] and the Fréchet variance. With respect to the metric <math>d</math> on <math>\mathcal{F}</math>, the ''Fréchet mean'' <math>\mu_\oplus</math>, also known as the [[barycenter]], and the ''Fréchet variance'' <math>V_\oplus</math> are defined as<ref>{{Cite journal|last1=Fréchet|first1=M.|date=1948|title=Les éléments aléatoires de nature quelconque dans un espace distancié|journal=Annales de l'Institut Henri Poincaré|volume=10|issue=4|pages=215-310215–310}}</ref>
<math display="block">\begin{align}
\mu_\oplus &= \operatorname{argmin}_{\mu \in \mathcal{F}} \mathbb{E}[d^2(\nu, \mu)], \\
Line 24:
\end{align}</math>
 
A widely used example is the Wasserstein-Fréchet mean, or simply the ''Wasserstein mean'', which is the Fréchet mean with the <math>L^2</math>-Wasserstein metric <math>d_{W_2}</math>.<ref>{{Cite journal|last1=Agueh|first1=A.|last2=Carlier|first2=G.|date=2011|title=Barycenters in the {Wasserstein} space|journal=SIAM Journal on Mathematical Analysis|volume=43|issue=2|pages=904-924904–924|doi=10.1137/100805741|s2cid=8592977 |url=https://hal.archives-ouvertes.fr/hal-00637399/file/AC_bary_revis.pdf }}</ref> For <math>\nu, \; \mu \in \mathcal{W}_2</math>, let <math>Q_\nu, \; Q_\mu</math> be the quantile functions of <math>\nu</math> and <math>\mu</math>, respectively. The Wasserstein mean and Wasserstein variance is defined as
<math display="block">\begin{align}
\mu_\oplus^* &= \operatorname{argmin}_{\mu \in \mathcal{W}_2} \mathbb{E} \left[ \int_0^1 (Q_\nu (s) - Q_\mu (s))^2 ds \right], \\
Line 36:
==Functional principal component analysis==
 
[[Functional principal component analysis|Functional principal component analysis(FPCA)]] can be directly applied to the probability density functions.<ref>{{Cite journal|last1=Kneip|first1=A.|last2=Utikal|first2=K.J.|date=2001|title=Inference for density families using functional principal component analysis|journal=Journal of the American Statistical Association|volume=96|issue=454|pages=519-532519–532|doi=10.1198/016214501753168235|s2cid=123524014 }}</ref> Consider a distribution process <math>\nu \sim \mathfrak{F}</math> and let <math>f</math> be the density function of <math>\nu</math>. Let the mean density function as <math>\mu(t) = \mathbb{E}\left[f(t)\right]</math> and the covariance function as <math>G(s,t) = \operatorname{Cov}(f(s), f(t))</math> with orthonormal eigenfunctions <math>\{\phi_j\}_{j=1}^\infty</math> and eigenvalues <math>\{\lambda_j\}_{j=1}^\infty</math>.
 
By the Karhunen-Loève theorem, <math>
Line 47:
==Transformation FPCA==
Assume the probability density functions <math>f</math> exist, and let <math>\mathcal{F}_f</math> be the space of density functions.
Transformation approaches introduce a continuous and invertible transformation <math>\Psi: \mathcal{F}_f \to \mathbb{H}</math>, where <math>\mathbb{H}</math> is a [[Hilbert space]] of functions. For instance, the log quantile density transformation or the centered log ratio transformation are popular choices.<ref>{{Cite journal|last1=Petersen|first1=A.|last2=Müller|first2=H.-G.|date=2016|title=Functional data analysis for density functions by transformation to a Hilbert space|journal=Annals of Statistics|volume=44|issue=1|pages=183-218183–218|doi=10.1214/15-AOS1363}}</ref><ref>{{Cite journal|last1=van den Boogaart|first1=K.G.|last2=Egozcue|first2=J.J.|last3=Pawlowsky-Glahn|first3=V.|date=2014|title=Bayes Hilbert spaces|journal=Australian and New Zealand Journal of Statistics|volume=56|issue=2|pages=171-194171–194|doi=10.1111/anzs.12074|s2cid=120612578 }}</ref>
 
For <math>f \in \mathcal{F}_f</math>, let <math>Y = \Psi(f)</math>, the transformed functional variable. The mean function <math>\mu_Y(t) = \mathbb{E}\left[Y(t)\right]</math> and the covariance function <math>G_Y(s,t) = \operatorname{Cov}(Y(s), Y(t))</math> are defined accordingly, and let <math>\{\lambda_j, \phi_j\}_{j=1}^\infty</math> be the eigenpairs of <math>G_Y(s,t)</math>. The Karhunen-Loève decomposition gives
<math>Y(t) = \mu_Y(t) + \sum_{j=1}^\infty \xi_j \phi_j(t)</math>, where <math>\xi_j = \int_D [Y(t) - \mu_Y(t)] \phi_j(t) dt</math>. Then, the <math>j</math>th transformation mode of variation is defined as <ref>{{Cite journal|last1=Petersen|first1=A.|last2=Müller|first2=H.-G.|date=2016|title=Functional data analysis for density functions by transformation to a Hilbert space|journal=Annals of Statistics|volume=44|issue=1|pages=183-218183–218|doi=10.1214/15-AOS1363}}</ref>
<math>
g_{j}^{TF}(t, \alpha) = \Psi^{-1} \left( \mu_Y + \alpha \sqrt{\lambda_j}\phi_j \right)(t), \quad t \in D, \; \alpha \in [-A, A].
Line 60:
Let <math>Y</math> be the projected density onto the tangent space, <math>Y = \log_{\mu_\oplus}(f)</math>.
 
In Log FPCA, FPCA is performed to <math>Y</math> and then projected back to <math>\mathcal{F}</math> using the exponential map.<ref>{{Cite journal|last1=Fletcher|first1=T.F.|last2=Lu|first2=C.|last3=Pizer|first3=S.M.|last4=Joshi|first4=S.|date=2004|title=Principal geodesic analysis for the study of nonlinear statistics of shape|journal=IEEE Transactions on Medical Imaging|volume=23|issue=8|pages=995-1005995–1005|doi=10.1109/TMI.2004.831793 |pmid=15338733 |s2cid=620015 }}</ref> Therefore, with <math>Y(t) = \mu_Y(t) + \sum_{j=1}^\infty \xi_j \phi_j(t)</math>, the <math>j</math>th Log FPCA mode of variation is defined as
<math>g_j^{Log}(t, \alpha) = \exp_{f_\oplus} \left( \mu_{f_\oplus} + \alpha \sqrt{\lambda_j} \phi_j \right)(t), \quad t \in D, \; \alpha \in [-A, A].</math>
 
Line 68:
</math>
Let the reference measure <math>\nu_0</math> be the Wasserstein mean <math>\mu_\oplus</math>.
Then, a ''principal geodesic subspace (PGS)'' of dimension <math>k</math> with respect to <math>\mu_\oplus</math> is a set <math>G_k = \operatorname{argmin}_{G \in \text{CG}_{\nu_\oplus, k}(\mathcal{W}_2)} K_{W_2}(G)</math>. <ref name="gpca1">{{Cite journal|last1=Bigot|first1=J.|last2=Gouet|first2=R.|last3=Klein|first3=T.|last4=López|first4=A.|date=2017|title=Geodesic PCA in the Wasserstein space by convex PCA|journal=Annales de l'institut Henri Poincare (B) Probability and Statistics|volume=53|issue=1|pages=1-261–26|doi=10.1214/15-AIHP706|bibcode=2017AnIHP..53....1B |s2cid=49256652 |url=https://hal.archives-ouvertes.fr/hal-01978864/file/AIHP706.pdf }}</ref><ref name="gpca2">{{Cite journal|last1=Cazelles|first1=E.|last2=Seguy|first2=V.|last3=Bigot|first3=J.|last4=Cuturi|first4=M.|last5=Papadakis|first5=N.|date=2018|title=Geodesic PCA versus Log-PCA of histograms in the Wasserstein space|journal=SIAM Journal on Scientific Computing|volume=40|issue=2|pages=B429-B456B429–B456|doi=10.1137/17M1143459 |bibcode=2018SJSC...40B.429C }}</ref>
 
Note that the tangent space <math>T_{\mu_\oplus}</math> is a subspace of <math>L^2_{\mu_\oplus}</math>, the Hilbert space of <math>{\mu_\oplus}</math>-square-integrable functions. Obtaining the PGS is equivalent to performing PCA in <math>L^2_{\mu_\oplus}</math> under constraints to lie in the convex and closed subset.<ref name="gpca2"/> Therefore, a simple approximation of the Wasserstein Geodesic PCA is the Log FPCA by relaxing the geodesicity constraint, while alternative techniques are suggested.<ref name="gpca1"/><ref name="gpca2"/>
Line 75:
 
==Fréchet regression==
Fréchet regression is a generalization of regression with responses taking values in a metric space and Euclidean predictors.<ref name="freg">{{Cite journal|last1=Petersen|first1=A.|last2=Müller|first2=H.-G.|date=2019|title=Fréchet regression for random objects with Euclidean predictors|journal=Annals of Statistics|volume=47|issue=2|pages=691691–719|doi=10.1214/17-719AOS1624 }}</ref><ref name="review">{{Cite journal|last1=Petersen|first1=A.|last2=Zhang|first2=C.|last3=Kokoszka|first3=P.|date=2022|title=Modeling probability density functions as data objects|journal=Econometrics and Statistics|volume=21|pages=159-178159–178|doi=10.1016/j.ecosta.2021.04.004 |s2cid=236589040 }}</ref> Using the Wasserstein metric <math>d_{W_2}</math>, Fréchet regression models can be applied to distributional objects. The global Wasserstein-Fréchet regression model is defined as
{{NumBlk|::|<math display="block">\begin{align}
m_\oplus (x) &= \operatorname{argmin}_{\omega \in \mathcal{F}} \mathbb{E}\left[ s_G(X,x) d_{W_2}^2(\nu,\omega) \right], \\
Line 98:
<math display="block">
\Gamma g(t) = \langle \beta(\cdot, t),g \rangle_{\omega{\oplus}}, \; t \in D, \; g \in T_{\omega{\oplus}}, \; \beta:D^2 \to \R.</math>
Estimation of the regression operator is based on empirical estimators obtained from samples.<ref>{{Cite journal|last1=Chen|first1=Y.|last2=Lin|first2=Z.|last3=Müller|first3=H.-G.|date=2023|title=Wasserstein regression|journal=Journal of the American Statistical Association|volume=118|issue=542|pages=869-882869–882|doi=10.1080/01621459.2021.1956937 |s2cid=219721275 }}</ref>
Also, the Fisher-Rao metric <math>d_{FR}</math> can be used in a similar fashion.<ref name="review"/><ref name="dai2022">{{Cite journal|last1=Dai|first1=X.|date=2022|title=Statistical inference on the Hilbert sphere with application to random densities|journal=Electronic Journal of Statistics|volume=16|issue=1|pages=700700–736|doi=10.1214/21-736EJS1942 }}</ref>
 
=Hypothesis testing=
Line 105:
==Wasserstein <math>F</math>-test==
 
Wasserstein <math>F</math>-test has been proposed to test for the effects of the predictors in the Fréchet regression framework with the Wasserstein metric.<ref name="ftest">{{Cite journal|last1=Petersen|first1=A.|last2=Liu|first2=X.|last3=Divani|first3=A.A.|date=2021|title=Wasserstein F-tests and confidence bands for the Fréchet regression of density response curves|journal=Annals of Statistics|volume=49|issue=1|pages=590590–611|doi=10.1214/20-611AOS1971 |arxiv=1910.13418 |s2cid=204950494 }}</ref> Consider Euclidean predictors <math>X \in \R^p</math> and distributional responses <math>\nu \in \mathcal{W}_2</math>. Denote the Wasserstein mean of <math>\nu</math> as <math>\mu_\oplus^*</math>, and the sample Wasserstein mean as <math>\hat{\mu}_\oplus^*</math>. Consider the global Wasserstein-Fréchet regression model <math>m_\oplus (x)</math> defined in ({{EquationNote|1}}), which is the conditional Wasserstein mean given <math>X=x</math>. The estimator of <math>m_\oplus (x)</math>, <math>\hat{m}_\oplus (x)</math> is obtained by minimizing the empirical version of the criterion.
 
Let <math>F</math>, <math>Q</math>, <math>f</math>,
Line 146:
[[Autoregressive model|Autoregressive (AR) models]] for distributional time series are constructed by defining [[Stationary process|stationarity]] and utilizing the notion of difference between distributions using <math>d_{W_2}</math> and <math>d_{FR}</math>.
 
In Wasserstein autoregressive model (WAR), consider a stationary density time series <math>f_t</math> with Wasserstein mean <math>f_\oplus</math>.<ref>{{Cite journal|last1=Zhang|first1=C.|last2=Kokoszka|first2=P.|last3=Petersen|first3=A.|date=2022|title=Wasserstein autoregressive models for density time series|journal=Journal of Time Series Analysis|volume=43|issue=1|pages=30-5230–52|doi=10.1111/jtsa.12590 |arxiv=2006.12640 |s2cid=219980621 }}</ref> Denote the difference between <math>f_t</math> and <math>f_\oplus</math> using the logarithm map, <math>f_t \ominus f_{\oplus} = \log_{f_\oplus} f_t = T_t - \text{id}</math>, where <math>T_t = Q_t \circ F_\oplus</math> is the optimal transport from <math>f_\oplus</math> to <math>f_t</math> in which <math>F_t</math> and <math>F_{\oplus}</math> are the cdf of <math>f_t</math> and <math>f_{\oplus}</math>. An <math>AR(1)</math> model on the tangent space <math>T_{f_\oplus}</math> is defined as <math>V_t = \beta V_{t-1} + \epsilon_t, \; t \in \mathbb{Z},</math> for <math>V_t \in T_{f_\oplus}</math> with the autoregressive parameter <math>\beta \in \mathbb{R}</math> and mean zero random i.i.d. innovations <math>\epsilon_t</math>. Under proper conditions, <math>\mu_t = \exp_{f_\oplus}(V_t)</math> with densities <math>f_t</math> and <math>V_t = \log_{f_\oplus}(\mu_t)</math>. Accordingly, <math>WAR(1)</math>, with a natural extension to order <math>p</math>, is defined as
<math display="block">
T_t - \text{id} = \beta (T_{t-1} - \text{id} ) + \epsilon_t.
</math>
 
On the other hand, the spherical autoregressive model (SAR) considers the Fisher-Rao metric.<ref>{{Cite journal|last1=Zhu|first1=C.|last2=Müller|first2=H.-G.|date=2023|title=Spherical autoregressive models, with application to distributional and compositional time series|journal=Journal of Econometrics|doi=10.1016/j.jeconom.2022.12.008 }}</ref> Following the settings of [[##Tests for the intrinsic mean]], let <math>x_t \in \mathcal{X}</math> with Fréchet mean <math>\mu_x</math>. Let <math>\theta = \arccos(\langle x_t, \mu_x \rangle )</math>, which is the geodesic distance between <math>x_t</math> and <math>\mu_x</math>. Define a rotation operator <math>Q_{x_t, \mu_x}</math> that rotates <math>x_t</math> to <math>\mu_x</math>. The spherical difference between <math>x_t</math> and <math>\mu_x</math> is represented as <math>R_t = x_t \ominus \mu_x = \theta Q_{x_t, \mu_x}</math>. Assume that <math>R_t</math> is a stationary sequence with the Fréchet mean <math>\mu_R</math>, then <math>SAR(1)</math> is defined as
<math display="block">
R_t - \mu_R = \beta (R_{t-1} - \mu_R) + \epsilon_t,
</math>
where <math>\mu_R = \mathbb{E}R_t</math> and mean zero random i.i.d innovations <math>\epsilon_t</math>. An alternative model, the differenced based spherical autoregressive (DSAR) model is defined with <math>R_t = x_{t+1} \ominus x_t</math>, with natural extensions to order <math>p</math>. A similar extension to the Wasserstein space was introduced.<ref>{{Cite journal|last1=Zhu|first1=C.|last2=Müller|first2=H.-G.|date=2023|title=Autoregressive optimal transport models|journal=Journal of the Royal Statistical Society Series B: Statistical Methodology|volume=85|issue=3|pages=1012–1033|doi=10.1093/jrsssb/qkad051 |pmid=37521164 |pmc=10376456 }}</ref>
 
=References=