Content deleted Content added
Tag: Reverted |
|||
Line 4:
The same kind of machine learning model can require different constraints, weights or learning rates to generalize different data patterns. These measures are called hyperparameters, and have to be tuned so that the model can optimally solve the machine learning problem. Hyperparameter optimization finds a tuple of hyperparameters that yields an optimal model which minimizes a predefined [[loss function]] on given independent data.<ref name=abs1502.02127>{{cite arXiv |eprint=1502.02127|last1=Claesen|first1=Marc|title=Hyperparameter Search in Machine Learning|author2=Bart De Moor|class=cs.LG|year=2015}}</ref> The objective function takes a tuple of hyperparameters and returns the associated loss.<ref name=abs1502.02127/> [[Cross-validation (statistics)|Cross-validation]] is often used to estimate this generalization performance, and therefore choose the set of values for hyperparameters that maximize it.<ref name="bergstra">{{cite journal|last1=Bergstra|first1=James|last2=Bengio|first2=Yoshua|year=2012|title=Random Search for Hyper-Parameter Optimization|url=http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf|journal=Journal of Machine Learning Research|volume=13|pages=281–305}}</ref>
==
[[File:Hyperparameter Optimization using Grid Search.svg|thumb|Grid search across different values of two hyperparameters. For each hyperparameter, 10 different values are considered, so a total of 100 different combinations are evaluated and compared. Blue contours indicate regions with strong results, whereas red ones show regions with poor results.]]
|