Content deleted Content added
Mathmensch (talk | contribs) →Proof: this does seem necessary |
→Terminology: Clarify phrasing and notation |
||
Line 4:
Let <math>E/F</math> be a ''[[field extension]]''. An element <math>\alpha\in E</math> is a ''primitive element'' for <math>E/F</math> if <math>E=F(\alpha),</math> i.e. if every element of <math>E</math> can be written as a [[rational function]] in <math>\alpha</math> with coefficients in <math>F</math>. If there exists such a primitive element, then <math>E/F</math> is referred to as a ''[[simple extension]]''.
If the field extension <math>E/F</math> has primitive element <math>\alpha</math> and is of finite [[Degree of a field extension|degree]] 4 <math>n = [E:F]</math>, then every element ''
:<math>
:<math>\{1,\alpha,\ldots,{\alpha}^{n-1}\}</math>
is a [[Basis (linear algebra)|basis]] for ''E'' as a [[vector space]] over ''F''. The degree ''n'' is equal to the degree of the [[irreducible polynomial]] of ''α'' over ''F'', the unique monic <math>f(x)\in F[x] </math> of minimal degree with ''α'' as a root (a linear dependency of <math>\{1,\alpha,\ldots,\alpha^{n-1},\alpha^n\} </math>).
If ''L'' is a [[splitting field]] of ''f''(''x'') containing its ''n'' distinct roots <math>\alpha_1,\ldots,\alpha_n </math>, then there are ''n'' [[Homomorphism|field embeddings]] <math>\sigma_i : F(\alpha)\hookrightarrow L </math> defined by <math>\sigma_i(\alpha)=\alpha_i </math> and <math>\sigma(a)=a </math> for <math>a\in F </math>, and these extend to automorphisms of ''L'' in the [[Galois group]], <math>\sigma_1,\ldots,\sigma_n\in \mathrm{Gal}(L/F) </math>.
== Example ==
If one adjoins to the [[rational number]]s <math>F = \mathbb{Q}</math> the two irrational numbers <math>\sqrt{2}</math> and <math>\sqrt{3}</math> to get the extension field <math>E=\mathbb{Q}(\sqrt{2},\sqrt{3})</math> of
:<math>\mathbb{Q}(\sqrt 2, \sqrt 3)=\mathbb{Q}(\sqrt2 + \sqrt3).</math>
One may also use the following more general argument.<ref>{{Cite book |last=Lang |first=Serge |url=http://link.springer.com/10.1007/978-1-4613-0041-0 |title=Algebra |date=2002 |publisher=Springer New York |isbn=978-1-4612-6551-1 |series=Graduate Texts in Mathematics |volume=211 |___location=New York, NY |pages=243 |doi=10.1007/978-1-4613-0041-0}}</ref> The field <math>E=\Q(\sqrt 2,\sqrt 3) </math> clearly has four field automorphisms <math>\sigma_1,\sigma_2,\sigma_3,\sigma_4: E\to E </math> defined by <math>\sigma_i(\sqrt 2)=\pm\sqrt 2 </math> and <math>\sigma_i(\sqrt 3)=\pm\sqrt 3 </math> for each choice of signs. The irreducible polynomial <math>f(X)\in\Q[X] </math> of <math>\alpha=\sqrt 2+\sqrt 3 </math> must have <math>f(\sigma_i(\alpha)) = \sigma_i(f(\alpha)) = 0 </math>, so <math>f(X) </math> must have at least four distinct roots <math>\sigma_i(\alpha)=\pm\sqrt 2 \pm\sqrt 3 </math>. Thus <math>f(X) </math> has degree at least four, and <math>[\Q(\alpha):\Q]\geq 4 </math>, but this is the degree of the entire field, <math>[E:\Q]=4 </math>, so <math>E = \Q(\alpha ) </math>.
== Theorem statement ==
Line 29 ⟶ 32:
For a non-separable extension <math>E/F</math> of [[characteristic p]], there is nevertheless a primitive element provided the degree [''E'' : ''F''] is ''p:'' indeed, there can be no non-trivial intermediate subfields since their degrees would be factors of the prime ''p''.
When [''E'' : ''F''] = ''p''<sup>2</sup>, there may not be a primitive element (in which case there are infinitely many intermediate fields by [[Steinitz's theorem (field theory)|Steinitz's theorem]]). The simplest example is <math>E=\mathbb{F}_p(T,U)</math>, the field of rational functions in two indeterminates ''T'' and ''U'' over the [[finite field]] with ''p'' elements, and <math>F=\mathbb{F}_p(T^p,U^p)</math>. In fact, for any
== Proof ==
Suppose first that <math>F</math> is infinite.
:<math>\
Since there are only finitely many possibilities for <math>\sigma(\
For the case where <math>F</math> is finite, we simply
== History ==
In his First Memoir of 1831, published in 1846,<ref>{{Cite book|last=Neumann|first=Peter M.|url=https://www.worldcat.org/oclc/757486602|title=The mathematical writings of Évariste Galois|date=2011|publisher=European Mathematical Society|isbn=978-3-03719-104-0|___location=Zürich|oclc=757486602}}</ref> [[Évariste Galois]] sketched a proof of the classical primitive element theorem in the case of a [[splitting field]] of a polynomial over the rational numbers. The gaps in his sketch could easily be filled<ref>{{Cite book|last=Tignol|first=Jean-Pierre|url=https://www.worldscientific.com/worldscibooks/10.1142/9719|title=Galois' Theory of Algebraic Equations|date=February 2016|publisher=WORLD SCIENTIFIC|isbn=978-981-4704-69-4|edition=2|___location=|pages=231|language=en|doi=10.1142/9719|oclc=1020698655}}</ref> (as remarked by the referee [[Siméon Denis Poisson|Poisson]]) by exploiting a theorem<ref>{{Cite book|last=Tignol|first=Jean-Pierre|url=https://www.worldscientific.com/worldscibooks/10.1142/9719|title=Galois' Theory of Algebraic Equations|date=February 2016|publisher=WORLD SCIENTIFIC|isbn=978-981-4704-69-4|edition=2|pages=135|language=en|doi=10.1142/9719|oclc=1020698655}}</ref><ref name=":1">{{Cite book|last=Cox|first=David A.|url=https://www.worldcat.org/oclc/784952441|title=Galois theory|date=2012|publisher=John Wiley & Sons|isbn=978-1-118-21845-7|edition=2nd|___location=Hoboken, NJ|pages=322|oclc=784952441}}</ref> of [[Joseph-Louis Lagrange|Lagrange]] from 1771, which Galois certainly knew. It is likely that Lagrange had already been aware of the primitive element theorem for splitting fields.<ref name=":1" /> Galois then used this theorem heavily in his development of the [[Galois group]]. Since then it has been used in the development of [[Galois theory]] and the [[fundamental theorem of Galois theory]].
The primitive element theorem was proved in its modern form by Ernst Steinitz, in an influential article on [[Field theory (mathematics)|field theory]] in 1910, which also contains [[Steinitz's theorem (field theory)|Steinitz's theorem]];<ref name=":0">{{Cite journal|last=Steinitz|first=Ernst|date=1910|title=Algebraische Theorie der Körper.|url=https://gdz.sub.uni-goettingen.de/id/PPN243919689_0137?tify=%7B%22view%22:%22info%22,%22pages%22:%5B171%5D%7D|journal=Journal für die reine und angewandte Mathematik|language=de|volume=1910|issue=137 |pages=167–309|doi=10.1515/crll.1910.137.167|s2cid=120807300 |issn=1435-5345}}</ref> Steinitz called the "classical" [[Emil Artin]] reformulated Galois theory in the 1930s without relying on primitive elements.<ref>{{cite book|last=Kleiner|first=Israel|title=A History of Abstract Algebra|date=2007|publisher=Springer|isbn=978-0-8176-4685-1|pages=64|chapter=§4.1 Galois theory|chapter-url=https://books.google.com/books?id=udj-1UuaOiIC&pg=PA64}}</ref><ref>{{Cite book|last=Artin|first=Emil|url=https://www.worldcat.org/oclc/38144376|title=Galois theory|date=1998|publisher=Dover Publications|others=Arthur N. Milgram|isbn=0-486-62342-4|edition=Republication of the 1944 revised edition of the 1942 first publication by The University Notre Dame Press|___location=Mineola, N.Y.|oclc=38144376}}</ref> ==References==
|