Content deleted Content added
Line 4:
Let <math>E/F</math> be a ''[[field extension]]''. An element <math>\alpha\in E</math> is a ''primitive element'' for <math>E/F</math> if <math>E=F(\alpha),</math> i.e. if every element of <math>E</math> can be written as a [[rational function]] in <math>\alpha</math> with coefficients in <math>F</math>. If there exists such a primitive element, then <math>E/F</math> is referred to as a ''[[simple extension]]''.
If the field extension <math>E/F</math> has primitive element <math>\alpha</math> and is of finite [[Degree of a field extension|degree]] <math>n = [E:F]</math>, then every element
:<math>\gamma =a_0+a_1{\alpha}+\cdots+a_{n-1}{\alpha}^{n-1}, </math>
Line 12:
:<math>\{1,\alpha,\ldots,{\alpha}^{n-1}\}</math>
is a [[Basis (linear algebra)|basis]] for ''E'' as a [[vector space]] over ''F''. The degree ''n'' is equal to the degree of the [[irreducible polynomial]] of ''α'' over ''F'', the unique monic <math>f(
If ''L'' is a [[splitting field]] of
== Example ==
|