Content deleted Content added
→Proof: misprint on the def of x_n |
|||
Line 34:
:<math>d(x_{n+1}, x_n) \le q^n d(x_1, x_0).</math>
This follows by [[Principle of mathematical induction|induction]] on ''n'', using the fact that ''T'' is a contraction mapping. Then we can show that <math>(x_n)_{n\in\mathbb N}</math> is a [[Cauchy sequence]]. In particular, let <math>m, n \in \N</math> such that
: <math>\begin{align}
Line 44:
\end{align}</math>
Let ε > 0 be arbitrary. Since
:<math>q^N < \frac{\varepsilon(1-q)}{d(x_1, x_0)}.</math>
Therefore, by choosing
:<math>d(x_m, x_n) \leq q^n d(x_1, x_0) \left ( \frac{1}{1-q} \right ) < \left (\frac{\varepsilon(1-q)}{d(x_1, x_0)} \right ) d(x_1, x_0) \left ( \frac{1}{1-q} \right ) = \varepsilon.</math>
|