Banach fixed-point theorem: Difference between revisions

Content deleted Content added
Proof: misprint on the def of x_n
Line 34:
:<math>d(x_{n+1}, x_n) \le q^n d(x_1, x_0).</math>
 
This follows by [[Principle of mathematical induction|induction]] on ''n'', using the fact that ''T'' is a contraction mapping. Then we can show that <math>(x_n)_{n\in\mathbb N}</math> is a [[Cauchy sequence]]. In particular, let <math>m, n \in \N</math> such that ''<math>m'' > ''n'' </math>:
 
: <math>\begin{align}
Line 44:
\end{align}</math>
 
Let ε > 0 be arbitrary. Since ''<math>q'' \in [0, 1)</math>, we can find a large <math>N \in \N</math> so that
 
:<math>q^N < \frac{\varepsilon(1-q)}{d(x_1, x_0)}.</math>
 
Therefore, by choosing ''<math>m''</math> and ''<math>n''</math> greater than ''<math>N''</math> we may write:
 
:<math>d(x_m, x_n) \leq q^n d(x_1, x_0) \left ( \frac{1}{1-q} \right ) < \left (\frac{\varepsilon(1-q)}{d(x_1, x_0)} \right ) d(x_1, x_0) \left ( \frac{1}{1-q} \right ) = \varepsilon.</math>